首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite significant implications of viral activity in sediment ecosystems, there are limited data describing how sediment viral assemblages respond to broader ecosystem changes. To document this, the spatial and temporal dynamics of viral and bacterial abundance (BA) and changes in the morphological distribution of viruses were examined within three salinity regions over 2 years. Viral abundances (VA) ranged from 0.2 to 17 × 10(10) viruses mL(-1) sediment while direct bacterial counts ranged from 3.8 to 37 × 10(8) cells mL(-1) sediment. Peaks and valleys in the abundance of extracted viruses and bacteria from surface sediments occurred simultaneously, with lows in February 2004 and highs in April 2003. Across all samples, viral and BA were positively correlated (P < 0.001). Vertical profiles showed a decrease in viral and BA with depth in sediments. Based on transmission electron microscopy results, viruses with diminutive capsids (20-50 nm) and from the Myoviridae and Podoviridae viral family types were dominant within surface sediments. The most morphologically diverse viral assemblages occurred in autumn samples from the sandy, polyhaline station and spring samples from the mesohaline station. Seasonal changes showed an average 72% decrease in VA from spring to winter. These observations support the view that viriobenthos assemblages are responsive to seasonal environmental changes and that viral processes have significant implications for the biogeochemical processes mediated by bacterial communities within Bay sediments.  相似文献   

2.
Chesapeake Bay, the largest estuary in North America, encompasses a wide range of nutrient loading and trophic levels from the rivers and upper Bay to the sea, providing an ideal natural environment in which to explore relationships between functional diversity, physical/chemical complexity and ecosystem function (e.g. nitrification). In this study, amoA gene fragments (encoding subunit A of the key nitrification enzyme, ammonia monooxygenase) were PCR‐amplified from DNA extracted from sediment cores collected at five stations spanning gradients of salinity, ammonium, nitrate, oxygen and organic carbon along the Bay and Choptank River, a subestuary of the Bay. Phylogenetic analysis of ~30 amoA clones from each station revealed extensive diversity within the β‐Proteobacteria group of ammonia‐oxidizing bacteria (AOB), with the vast majority of sequences falling into coherent phylogenetic clusters distinct from sequences of cultivated AOB. Over 70% of the clones fell into two major phylogenetic clusters that appear to represent novel groups of Nitrosomonas‐like and Nitrosospira‐like amoA sequences that may be specific to estuarine and marine environments. Rarefaction analysis, estimators of genetic variation and dissimilarity indices all revealed differences in the relative amoA‐based diversity and/or richness among most of the stations, with the highest diversity at the North Bay station and the lowest at the mesohaline stations. Although salinity appears to play a role, no single physical or chemical parameter entirely explains the pattern of diversity along the estuary, suggesting that a complex combination of environmental factors may shape the overall level of AOB diversity in this dynamic environment.  相似文献   

3.
4.
Metagenomic Characterization of Chesapeake Bay Virioplankton   总被引:6,自引:1,他引:6       下载免费PDF全文
Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.  相似文献   

5.
Hybridization Analysis of Chesapeake Bay Virioplankton   总被引:12,自引:3,他引:12       下载免费PDF全文
It has been hypothesized that, by specifically lysing numerically dominant host strains, the virioplankton may play a role in maintaining clonal diversity of heterotrophic bacteria and phytoplankton populations. If viruses selectively lyse only those host species that are numerically dominant, then the number of a specific virus within the virioplankton would be expected to change dramatically over time and space, in coordination with changes in abundance of the host. In this study, the abundances of specific viruses in Chesapeake Bay water samples were monitored, using nucleic acid probes and hybridization analysis. Total virioplankton in a water sample was separated by pulsed-field gel electrophoresis and hybridized with nucleic acid probes specific to either single viral strains or a group of viruses with similar genome sizes. The abundances of specific viruses were inferred from the intensity of the hybridization signal. By using this technique, a virus comprising 1/1,000 of the total virioplankton abundance (ca. 104 PFU/ml) could be detected. Titers of either a single virus species or a group of viruses changed over time, increasing to peak abundance and then declining to low or undetectable levels, and were geographically localized in the bay. Peak signal intensities, i.e., peak abundances of virus strains, were 10-fold greater than the low background level. Furthermore, virus species were found to be restricted to a particular depth, since probes specific to viruses from bottom water did not hybridize with virus genomes from surface water at the same geographical location. Overall, changes in abundances of specific viruses within the virioplankton were episodic, supporting the hypothesis that viral infection influences, if not controls, clonal diversity within heterotrophic bacteria and phytoplankton communities.  相似文献   

6.
Seasonality of Chesapeake Bay bacterioplankton species   总被引:19,自引:0,他引:19  
Bacteria, gamma-subclass of Proteobacteria, Vibrio-Photobacterium, Vibrio vulnificus, Vibrio cholerae-Vibrio mimicus, and Vibrio cincinnatiensis in water samples collected from the Choptank River in Chesapeake Bay from 15 April to 16 December 1996 were enumerated using a fluorescent oligonucleotide direct-counting (FODC) procedure. FODC results obtained using a Bacteria taxon-specific probe ranged from one-third the number of to the same number as that obtained by the acridine orange direct count (AODC) procedure. The abundance of individual taxa (per liter) ranged from 0.25 x 10(10) to 2.6 x 10(10) Bacteria, 0.32 x 10(8) to 3.1 x 10(8) gamma-Proteobacteria, 0.2 x 10(8) to 2.1 x 10(8) Vibrio-Photobacterium, 0.5 x 10(7) to 10 x 10(7) V. vulnificus, 0.2 x 10(6) to 6 x 10(6) V. cholerae-V. mimicus, and 0.5 x 10(5) to 8 x 10(5) V. cincinnatiensis. The occurrence of all taxa monitored in this study was higher in summer; however, these taxa made up a larger proportion of the Bacteria when the water temperature was low. Large fluctuations in species abundance as well as in percent composition of Vibrio-Photobacterium occurred from week to week, indicating that localized blooms of these taxa occur. The cross-Choptank River transect sample profile of V. vulnificus and V. cholerae-V. mimicus varied significantly in abundance, and trans-Choptank River transect samples revealed a patchy distribution.  相似文献   

7.
【目的】调查九龙江流域对厦门海域潜在的病原菌"污染",为相关侵染性病害的预防和控制提供有价值的资料。【方法】通过TCBS(Thiosulfate Citrate Bile Salts Sucrose)培养基从九龙江河口沉积物中分离到158株细菌,应用16S rRNA基因-RFLP(限制性酶切图谱多样性分析)及16S rRNA基因序列分析等方法对158株细菌进行分子鉴定。【结果】研究结果表明九龙江口沉积物中分布的TCBS菌群分别属于7个属,其中假单胞菌属(Pseudomonas)占28%,气单胞菌属(Aeromonas)占24%,假交替单胞菌属(Pseudoalteromonas)占19%,希瓦氏菌属(Shewanella)占13%,芽孢杆菌属(Bacillus)占11%,弧菌属(Vibrio)占4%,嗜冷杆菌属(Psychrobacter)占1%。不同站位TCBS菌群的组成及各菌群的相对差异明显,其中上游区域以非嗜盐或耐盐细菌为主,下游区域以嗜盐细菌和耐盐细菌为主,具有典型的河口细菌分布特征。盐度对各TCBS菌群的分布具有重要的影响。弧菌在整个河口区所占的比例不大(6%-19%)且集中在下游区域。【结论】九龙江口存在大量的条件致病菌,其中以气单胞菌属为代表的耐盐菌,对厦门海域存在陆源性污染的风险;绝大多数弧菌属于海洋土著细菌,正常情况下(非流行性弧菌病期间)非来源于九龙江冲淡水的直接污染。  相似文献   

8.
Tin and Tin-Resistant Microorganisms in Chesapeake Bay   总被引:1,自引:7,他引:1       下载免费PDF全文
Sediment and water samples from nine stations in Chesapeake Bay were examined for tin content and for microbial populations resistant to inorganic tin (75 mg of Sn liter−1 as SnCl4·5H2O) or to the organotin compound dimethyltin chloride [15 mg of Sn liter−1 as (CH3)2SnCl2]. Tin concentrations in sediments were higher (3.0 to 7.9 mg kg−1) at sites impacted by human activity than at open water sites (0.8 to 0.9 mg kg−1), and they were very high (239.6 mg kg−1) in Baltimore Harbor, which is impacted by both shipping and heavy industry. Inorganic tin (75 mg Sn liter−1) in agar medium significantly decreased viable counts, but its toxicity was markedly reduced in liquid medium; it was not toxic in medium solidified with silica gel. Addition of SnCl4·5H2O to these media produced a tin precipitate which was not involved in the metal's toxicity. The data suggest that a soluble tin-agar complex which is toxic to cells is formed in agar medium. Thus, the toxicity of tin depends more on the chemical species than on the metal concentration in the medium. All sites in Chesapeake Bay contained organisms resistant to tin. The microbial flora was more sensitive to (CH3)2SnCl2 than to SnCl4·5H2O. The elevated level of tin-resistant microorganisms in some aeas not containing unusually high tin concentrations suggests that factors other than tin may participate in the selection for a tin-tolerant microbial flora.  相似文献   

9.
The seasonal incidence and occurrence of indicator organisms and pathogens were studied at four sites in the Rhode River, a subestuary of Chesapeake Bay. The highest frequency of occurrence of total and fecal coliforms and fecal streptococci was in Muddy Creek, a marsh area receiving pasture land runoff. Second highest frequency of occurrence of these bacteria was in Cadle Creek, a populated area. Lowest measurements of these parameters were obtained at stations in the central portion of the Rhode River. No Salmonella spp. were detected by the methods employed in this study. However, it is concluded that if these organisms are present, the concentrations are ≤1 organism per liter. The presence of Clostridium botulinum was detected in 12% of the samples tested.  相似文献   

10.
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19 degrees C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

11.
Predictability of Vibrio cholerae in Chesapeake Bay   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19°C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

12.
Ecology of Vibrio parahaemolyticus in Chesapeake Bay   总被引:49,自引:4,他引:49  
A study of the ecology of Vibrio parahaemolyticus and related vibrios in the Rhode River area of Chesapeake Bay was carried out over the period December 1970 through August 1971. The incidence of V. parahaemolyticus and related vibrios was found to be correlated with water temperature. The vibrios could not be detected in the water column during the winter months, although they were present in sediment. From late spring to early summer, when water temperatures were 14 +/- 1 C, vibrios over-wintering in sediment were released from the bottom communities and attached to zooplankton, proliferating as the temperature rose. The number of vibrios in and on plankton was reflected in the water column bacterial population densities at water temperatures of ca. 19 C. Thus, temperature of the water column in the range of 14 to 19 C was found to be critical in the annual cycle of the vibrios. Interaction between sediment, water, and zooplankton was found to be essential in the natural estuarine ecosystem. Bacterial counts of zooplankton were found to be temperature dependent. The bacterial population associated with zooplankton was found to be predominantly on external surfaces and was specific, differing from that of the sediment. Vibrio spp. and related organisms comprised the total bacterial population associated with zooplankton in summer months. The ecological role of Vibrio spp., including V. parahaemolyticus, was found to be significant, with respect to their property of chitin digestion and in relation to the population dynamics of zooplankton in Chesapeake Bay.  相似文献   

13.
Incidence of Vibrio parahaemolyticus in Chesapeake Bay   总被引:2,自引:2,他引:2       下载免费PDF全文
A Bay-wide survey of the distribution of Vibrio parahaemolyticus was carried out in Chesapeake Bay during May 1972, to determine whether the annual cycle of V. parahaemolyticus which was observed to occur in the Rhode River subestuary of Chesapeake Bay took place in other parts of Chesapeake Bay. In an earlier study, April to early June, when the water temperature rises from 14 to 19 C, was found to be a critical period in the annual cycle of the organism in the Rhode River, since this is the time period when the annual cycle is initiated. Results of this study, however, revealed that V. parahaemolyticus could not be found in the water column during May 1972. Nevertheless, several samples of sediment and plankton yielded V. parahaemolyticus isolates. Comparison of data with those for the Rhode River area examined in the earlier studies of the annual cycle of V. parahaemolyticus suggests that the time of initiation of the annual cycle of V. parahaemolyticus in the open Bay proper may be influenced by various factors such as temperature and salinity, i.e., deeper water locations may show initiation of the V. parahaemolyticus annual cycle later than shallow areas. Confirmation of the presence of the organisms in the samples studied was accomplished using numerical taxonomy with 19 reference strains also included in the analyses.  相似文献   

14.
黄河口潮间带沉积物细菌群落结构特征   总被引:2,自引:0,他引:2  
尹霞  李思琦  尚天微  江雪艳  甄毓 《生态学报》2021,41(21):8496-8506
选取黄河口潮间带有植被覆盖和无植被覆盖两个区域采集柱状沉积物,利用实时荧光定量PCR技术和高通量测序技术分析有无植被覆盖沉积物中的细菌群落特征和功能差异,探究影响潮间带细菌群落结构的主要环境因子。结果显示,细菌丰度在有植被区域大于无植被区域。沉积物中细菌群落丰富度和多样性在有植被区域随深度的增加而增加,而在无植被区域其最高值出现在沉积物中层(14-16 cm)。两个区域在门分类水平上以变形菌(Proteobacteria)、绿弯菌(Chloroflexi)、放线菌(Actinobacteria)和酸杆菌(Acidobacteria)为主;属分类水平上的优势类群为芽孢杆菌(Bacillus)、苍白杆菌(Ochrobactrum)、拟无枝菌酸菌(Amycolatopsis)和鞘脂单胞菌(Sphingomonas)等。相关性分析发现盐度和亚硝酸盐浓度对细菌群落多样性和丰富度影响显著。功能预测分析表明,有植被区域沉积物细菌在氨基酸代谢、膜运输和碳水化合物代谢方面功能活跃,而无植被区域细菌则在核酸复制和修复、能量代谢过程方面更为活跃。  相似文献   

15.
赵峰  徐奎栋  孟昭翠 《应用生态学报》2012,23(12):3441-3448
利用PCR-DGGE(变性梯度凝胶电泳)指纹图谱和测序技术,以及Ludox-QPS(密度梯度离心-定量蛋白银染色)方法,研究了2011年4月和8月长江口低氧区3个站位表层沉积物中纤毛虫多样性及季节变化.结果表明:不同站位之间纤毛虫分子多样性存在显著差异(ANOSIM分析:R=0.896,P=0.0001),但季节变化不显著(R=0.043,P=0.207).序列数最多的类群为旋唇纲中的寡毛类和舞毛类纤毛虫.Ludox-QPS法研究的纤毛虫活动虫体的种类数及丰度可维持在较高的水平,且在夏季增高2~5倍.Ludox-QPS法与DGGE技术检测到的不同站位间纤毛虫多样性变化趋势基本一致.但Ludox-QPS法检测到纤毛虫活动虫种类数及丰度随季节更替变化显著,该法检获的纤毛虫种类数高于DGGE条带数.长江口低氧区的纤毛虫丰度及多样性较高,可为潜在的水母水螅体提供食物支撑.  相似文献   

16.
Macrobenthic invertebrates of an industrialized seaport ecosystem were studied seasonally from October, 1977 through July, 1978. Five stations were selected along the Southern Branch of the Elizabeth River, Virginia. The benthic community was dominated by eurytopic species that were not affected by minor to moderate stresses induced by man's activities in the seaport. Caution is required when benthic communities of the lower polyhaline to mesohaline zones of an estuary are used to indicate the effects of anthropomorphic alterations.  相似文献   

17.
甲藻孢囊在长江口海域表层沉积物中的分布   总被引:10,自引:0,他引:10  
为了了解长江口海域赤潮爆发潜势,于2002年4月至5月用采泥器采集了位于122°~123.5°E、29°~32°N之间12个站位的表层沉积物,分析沉积物中甲藻孢囊的分布.共分析鉴定出孢囊类型29种,其中自养型11种,异养型18种.每个站位的孢囊种类在10~21之间,孢囊密度为11.7~587孢囊·g-1干泥之间.远岸海域孢囊种类较为丰富,密度也较高.在调查区域内,孢囊密度及种类自西向东、自北向南逐渐增加.亚历山大藻孢囊分布广泛,最高密度为40.4孢囊·g-1干泥,其他赤潮种类的孢囊如链状裸甲藻、多边舌甲藻、锥状斯氏藻、科夫多沟藻和无纹多沟藻等都在长江口海域有分布.  相似文献   

18.
Isolation and Diversity of Actinomycetes in the Chesapeake Bay   总被引:12,自引:3,他引:12       下载免费PDF全文
Chesapeake Bay was investigated as a source of actinomycetes to screen for production of novel bioactive compounds. The presence of relatively large populations of actinoplanetes (chemotype II/D actinomycetes) in Chesapeake Bay sediment samples indicates that it is an eminently suitable ecosystem from which to isolate actinomycetes for screening programs. Actinomycetes were isolated from sediment samples collected in Chesapeake Bay with an isolation medium containing nalidixic acid, which proved to be more effective than heat pretreatment of samples. Actinomycete counts ranged from a high of 1.4 × 105 to a low of 1.8 × 102 CFU/ml of sediment. Actinomycetes constituted 0.15 to 8.63% of the culturable microbial community. The majority of isolates from the eight stations studied were actinoplanetes (i.e., chemotype II/D), and 249 of these isolates were obtained in a total of 298 actinomycete isolates. Antimicrobial activity profiles indicated that diverse populations of actinoplanetes were present at each station. DNA hybridization studies showed considerable diversity among isolates between stations, but indicated that actinoplanete strains making up populations at nearby stations were more similar to each other than to populations sampled at distant stations. The diversity of actinoplanetes and the ease with which these organisms were isolated from Chesapeake Bay sediments make this a useful source of these actinomycetes.  相似文献   

19.
Distribution of viruses in the Chesapeake Bay.   总被引:13,自引:0,他引:13  
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   

20.
Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable, aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved oxygen concentration and sediment mercury concentration and negatively correlated with water turbidity. A relationship between mercury resistance and metabolic capability for reduction of mercuric ion to the metallic state was established by surveying a number of HgCl2-resistant cultures. The reaction was also observed in microrganisms isolated by differential centrifugation of water and sediment samples. Mercuric ion exhibited an average half-life of 12.5 days in the presence of approximately 105 organisms/ml. Cultures resistant to 6 ppm of mercuric chloride and 3 ppm of phenylmercuric acetate (PMA) were classified into eight generic categories.Pseudomonas spp. were the most numerous of those bacteria capable of metabolizing both compounds; however, PMA was more toxic and was more selective forPseudomonas. The mercury-resistant generic distribution was distinct from that of the total bacterial generic distribution and differed significantly between water and sediment, positionally and seasonally. The proportion of nonglucose-utilizing mercury-resistantPsuedomonas spp. was found to be positively correlated with total bacterial mercury resistance. It is concluded from this study that numbers of mercury-resistant bacteria as established by plate count can serve as a valid index ofin situ Hg2+ metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号