首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein kinase which phosphorylates histone was isolated fromthe endoplasmic reticulum-rich fractions of Lemna paucicostata.The enzyme could be solubilized by sonication, and its molecularweight was estimated as 220,000 by Sephacryl S-300 gel filtration.The optimum pH for enzyme activity was 9.0–9.5 and theactivity was stimulated by Co2$, Mg2$ and Mn2$. Substrate proteinswhich might be phosphorylated by this protein kinase were alsodetected in microsomal fractions of Lemna plants. 1 Present address: Advanced Research Laboratory, HITACHI LTD.,Kokubunji, Tokyo 185, Japan.  相似文献   

2.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

3.
Putrescine N-methyltransferase, a new enzyme catalyzing theformation of N-methylputrescine from putrescine and S-adenosyl-L-methioninewas found in roots of tobacco plants. The enzyme was purified30-fold from crude extracts of tobacco roots. NMethylputrescinewas identified as the reaction product by comparison with theauthentic compound. The enzyme had a pH optimum between pH 8and 9, and a molecular weight of about 60,000, as determinedby gel filtration. Km values for putrescine and 5-adenosyl-L-methioninewere 4.0 x 10–4 M and 1.1 x 10–4 M, respectively.Enzyme activity was inhibited by N-chloromercuribenzoate andAg+. No cofactors were required. Of the various substrates tested,only putrescine served as a methyl acceptor. The enzyme waslocalized exclusively in the roots and its activity was greadyenhanced by decapitation. The presence of putrescine N-methyltransferase in tobacco rootsstrongly suggests that N-methylputrescine participates as anintermediate in nicotine biosynthesis. (Received March 2, 1971; )  相似文献   

4.
The intracellular distribution of NADPH- and NADH-dependentduroquinone reductase (NAD (P)H-DQR) from etiolated zucchinihypocotyls (Cucurbita pepo L.) was investigated. About 80% ofthis enzyme is in the supernatant fraction and is probably cytosolic.Particulate NAD (P)H-DQR was largely (42%) found in associationwith the plasma membrane and was strongly stimulated by TX100.Another 33% of NAD (P)H-DQR was associated with mitochondria,and minor fractions with the endoplasmic reticulum (8%) andother particles. All these fractions were little or not stimulatedby TX100. The distribution of detergent-activated NAD (P)H-DQRis thus distinct from microsomal NADH- and NADPH-CCR. The plasma membrane was purified from microsomal fractions bymetrizamide plus sucrose density gradient centrifugation orby PEG/dextran phase partitioning. Both types of particle preparationspeaked at a density (d) of 1.165 g cm–3 in sucrose gradientsand contained substantial TX100-sensitive NADH-DQR, TX100-stimulatedNAD (P)H-DQR, together with traces of NADH-CCR and trapped ‘soluble’enzyme (MDH, NADP-malic enzyme) activities. In isopycnic gradientsof unfractionated microsomes, however, trapped enzymes peakedat d 1.155 whereas NAD (P)H-DQR peaked at d 1.165 and GSII atd 1.170, probably revealing plasma membrane heterogeneity. Furtherevidence of heterogeneity was provided by fractionation of plasmamembrane vesicles on dextran step-gradients. Most of the trapped MDH was released to the supernatant by sonicationor treatment with 0.0125% TX100. Under these conditions mostof the NAD (P)H-DQR sedimented with the membranes. It is concludedthat NAD (P)H-DQR is bound to the inside of plasma membranevesicles, but a fraction (7 to 31%) may be ‘soluble’and sequestered within the vesicle lumen. Part of the detergent-sensitiveNADH-DQR may be externally bound and accessible to non-permeatingsubstrates. Key words: Cucurbita, NAD (P)H-quinone reductase, plasma membrane  相似文献   

5.
Nerve ending particle (NEP) fractions were prepared from homogenatesof rat olfactory epithelium by differential centrifugation.Homogenates were made from each of the four turbinals from theright and left sides. Na+-K+ ATPase activity and its responsein vitro to seven odorous chemicals was measured for each NEPfraction. Each odorous chemical generated a different patternof response of enzyme activity in the eight fractions. Analysisof the results of enzyme activity perturbation indicated thatthe turbinals are not bilaterally symmetric. 1 Paper #4590, Mississippii Agricultural Experiment Station,Mississippi State, MS 39762. This work was supported by theOffice of Research and Graduate Studies, Mississippi State Universityand Army Research Office Contract #DAAG 29-80-C-0033.  相似文献   

6.
Cyclic adenosine 3',5'-monophosphate (cAMP) content of variouscultured rhizobia strains and tissues of legumes and non-leguminousplants was measured by enzyme immunoassays. Most rhizobia, culturedfor 44 to 165 h, contained cAMP ranging from 0.6 to 5 pmol mg-1proteinexcept forAzorhizobium caulinodansORS571. The culture mediaalso contained varying amounts of cAMP depending on the strainof rhizobia.Azorhizobiumcells and their media contained no detectablecAMP. Nodules from most legumes and non-legumes had cAMP contentsranging from 2–70 pmol g-1f.wt. However, nodules fromSesbaniarostrata,Crotalaria spectabilisandParasponia andersoniishowedundetectable cAMP levels, and those fromGlycine maxandVignaangularisoccasionally showed levels below the detection limit.The leaves of non-legumes mostly had cAMP levels below detectionlimit (approx. 1.0 pmol g-1 f.wt), while the leaves ofa few legumes occasionally had detectable cAMP. The possiblerole of cAMP as a symbiotic signal is discussed. cAMP; legumes; modules; rhizobia; symbiosis  相似文献   

7.
The activity of shikimate: NADP oxidoreductase [EC 1. 1. 1.25] in sweet potato root tissue increased soon after slicing.Enzyme preparations obtained from both sliced tissue and fromfresh tissue probably contained a single enzyme component, andthey showed identical chromatographical behaviour. Km values of the enzyme for NADP and shikimate were 1.0x10–4Mand 1.3 x 10–3M, respectively. Enzyme activity was potentlyinhibited by SH-inhibitors such as p-chloromercuribenzoate andoxidized glutathione. Enzyme activity was affected neither by mononucleotides suchas ATP, ADP and AMP, divalent cations, Mg++, Ca++ and Mn++,nor by metabolites such as tryptophan, phenylalanine, tyrosineand t-cinnamic acid which are involved in aromatic compoundsyntheses. The enzyme rapidly lost its activity. This inactivation reactionshowed a time course consisting of two steps of the first-orderreaction. The inactivated enzyme preparation was not reactivatedby thiol compounds such as cysteine, 2-mercaptoethanol and glutathione,although these reagents, to a certain extent, protected theenzyme from inactivation. The results suggest that denaturationof the enzyme protein was involved in inactivation of the enzyme. 1Part 74 of the phytopathological chemistry of sweet potatowith black rot and injury. 2Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Setagaya-ku, Tokyo. (Received August 5, 1968; )  相似文献   

8.
Partially purified homoserine dehydrogenase was prepared frompea seedlings. The optimum pH for this enzyme is approximately 5.4. The Kmvaluesfor ASA and TPNH are 4.6xl0–4Af and 7.7xl0–5M, respectively.This enzyme can also utilize DPNH but less effectively thanTPNH. In contrast with yeast homoserine dehydrogenase whichis insensitive to — SH reagents, the pea enzyme is inhibitedalmost completely by 10–4MPCMB and 10–5MHgCl2, theinhibition being removed by 10–2M thioglycolate. Homoserinedehydrogenase was found not only in decotylized seedlings, butalso in cotyledons. The significance of this enzyme in homoserine biosynthesis ingerminating pea seeds has been discussed. (Received February 20, 1961; )  相似文献   

9.
A sex pheromone, PR-IP Inducer, which is released from mating-typeminus cells of Closterium, was purified by monitoring its biologicaleffect on the induction of the release of protoplast-release-inducingprotein (PR-IP) from mating-type plus cells. The purified PR-IPInducer had an apparent molecular mass of 22 kDa and of 18.7kDa as determined by SDS-PAGE and mass-spectrometric analysis,respectively. Staining with periodic acid-Schiff reagent indicatedthat PR-IP Inducer included a glycan chain. From the analysisof a dose-response curve, it seemed that PR-IP Inducer was ableto exert its activity over quite wide range of concentrations(1 x 10–10–3 x 10–7 M). It appears that PR-IPInducer is a novel glycoproteinaceous pheromone, as is PR-IP,and that it exerts its effect at the earliest stages of thesexual reproduction of the Closterium peracerosum-strigosum-littoralecomplex. 1Recipient of a Fellowship for Japanese Junior Scientists fromthe Japan Society for the Promotion of Science.  相似文献   

10.
An 18-h treatment of synchronously-grown Chlorella pyrenoidosawith 2,4-D did not significantly alter the size, dry weight,degree of synchrony, or pigment content of the cells, nor weredetectable quantities of ethylene produced. When Chlorella pyrenoidosawas treated with 5?10–4 M 2,4-D, there was a statisticallysignificant stimulation of both net oxygen uptake and productionwhile 5?10 M 2,4-D inhibited both processes. When Chlorellapyrenoidosa was treated with 5?10–4 M and 5?10–3M 2,4-D, significantly greater amounts of glycollate were presentin the culture medium, even though an assay for glycollate dehydrogenaseshowed that the activity of this enzyme from 2,4-D-treated Chlorellapyrenoidosa was three times greater than in control cells. Looselybound 2,4-D was partitioned from a nonaqueously isolated chloroplastfraction, while other cell fractions failed to show detectablequantities of 2,4-D. It is postulated that in Chlorella pyrenoidosathe chloroplast is a target for 2,4-D action and that interferencein photorespiratory processes may underlie the observed responses.  相似文献   

11.
Ipomeamarone 15-hydroxylase activity was mainly recovered inthe pellet fraction between centrifugations at 10,000 and 100,000?gfrom a crude extract of Ceratocystis fimbriata-infected sweetpotato root tissue, whereas cinnamic acid 4-hydroxylase activitywas found between centrifugations at 300 and 10,000?g. Whenparticles in the crude extract were fractionated by sucrosedensity gradient centrifugation, the rough-surfaced microsomeswere distributed over a wide density range from 1.09 to 1.14g cm–3, judging from the distributions of protein, RNAand NADPH-cytochrome c reductase activity. Phosphorylcholine-glyceridetransferase activity was only in the lighter half of the microsomalfraction (density: 1.09–1.11 g cm–3). Ipomeamarone15-hydroxylase activity was found in heavier half of the microsomalfraction (density: 1.10–1.14 g cm–3). We proposethat this tissue has two rough-surfaced endoplasmic reticulumspecies, only one of which carries phosphorylcholine-glyceridetransferase, and that the cytochrome P-450 system is localizedon the species lacking the enzyme. Cinnamic acid 4-hydroxylaseactivity was mainly found in a fraction that had densities of1.17–1.19 g cm–3 and contained vesicular particlesof various sizes. 1 Present address: Laboratory of Food Hygienics, Faculty ofAgriculture, Kagawa University, Miki-cho, Kida-gun, Kagawa 761-07,Japan. (Received September 6, 1984; Accepted December 27, 1984)  相似文献   

12.
The Metabolism of Abscisic Acid   总被引:7,自引:2,他引:5  
The light-catalysed isomerization of (+)-abscisic acid (ABA)to its trans isomer during isolation from leaves was monitoredby the addition of (±)-[2-14C]ABA to the extraction medium.(+)Trans-abscisic acid (t-ABA) was found to occur naturallyin rose (Rosa arvensis) leaves at 20µg/kg fresh weight;(+)-ABA was present at 594µg/kg. (±)-[2-14D]Trans-abscisicacid was not isomerized enzymically to ABA in tomato shoots. (±)-Abscisic acid was converted by tomato shoots to awater-soluble neutral product, ‘Metabolite B’, whichwas identified as abscisyl-ß-D-glucopyranoside. When(±)-[2-14C]trans-abscisic acid in an equimolar mixturewith (±)-[2-14C}ABA was fed to tomato shoots it was convertedto its glucose ester 10 times faster than was ABA. Trans-abscisyl-ß-D-glucopyrano8ide only was formedfrom (±)-[2-14C]t-ABA in experiments lasting up to 30h. Glucosyl abscisate was formed slowly from ABA and the freeacid fraction contained an excess of the unnatural (–).ABAas did the ABA released from abscisyl-ß-D-glucopyranosideby alkaline hydrolysis. The (+).ABA appeared to be the solesource of the acidic ‘Metabolite C" previously noted. The concentrations of endogenous (+)-, (+)-[2-14C]-, and (–)-[2-14C]ABAremaining as free acid, and also in the hydrolysate of abscisyl-ß-D-glucopyranoside,were measured by the ORD, UV absorption, and scintillation spectrometryof highly purified extracts of ABA from tomato shoots whichhad been supplied with racemic [2-l4C]ABA.  相似文献   

13.
Woodrow, L. and Grodzinski, B. 1987. Ethylene evolution trombracts and leaves ol Poinsettia, Euphorbia pulcherrima Willd.—J.exp. Bot. 38: 2024–2032. Ethylene release from fully expanded, red and white bracts andleaves of poinsettia, Euphorbia pulcherrima Willd., was compared.On a laminar (area) basis leaves contained about 50 times morechlorophyll and demonstrated 10 times the photosynthetic rateof the bracts. Both tissues contained starch, however, solublecarbohydrate in the bracts consisted primarily of reducing hexoseswhile the leaves contained mainly sucrose for translocation.The total free alpha-amino nitrogen content of the bract tissuewas twice that of the leaf tissue. The leaves contained moreACC (1-aminocyclopropane-1-carboxylic acid) and produced proportionallymore endogenous C2H4 than either the red or white bracts. ACC-stimulated2H4 release was also greatest from the green tissue indicatingthat the EFE (ethylene forming enzyme) was most active in theleaves. The specific activity of the 14C2H4/12C2H4 releasedfrom [2,3-14C]ACC confirmed ACC as the primary precursor ofC2H4 in this tissue. Ethylene release from the non-photosynthetic,bract tissue was not markedly affected by alterations in CO2or light conditions. In green leaf tissue endogeneous ethylenerelease increased from 1·5 to 6·0 pmol C2H4 cm–2h–1 while ACC-stimulated ethylene release increased from10 to 35 pmol C2H4 cm2– h1– as the CO2 partial pressureincreased from 100 to 1 200 µbar. Key words: Poinsettia, ethylene, bracts  相似文献   

14.
NADP-specific isocitrate dehydrogenase from the soluble fractionof maturing castor bean endosperm was partially purified (approximately180-fold) and some of its enzymatic properties were studied.Mg++, Mn++, Cd++, Ba++, Co++, Zn++, and Sr++ were activatorsof the enzyme reaction at a concentration of 6.7x10 M. The optimumpH of this enzyme was about 8.5. The enzyme was stable in thenarrow range from pH 7.0 to pH 8.0. Km values for isocitrateand NADP at pH 8.5 were 3.5x10–6 M and 3.6x10–6M, respectively. Enzyme stability was not affected by NaCl concentrationand enzyme reaction was inhibited at 5x10–6 M PCMB (80%inhibition). It is suggested that the condensation product ofglyoxylate and oxalacetate also inhibits the reaction. NADP-IDHin the crude extract from maturing castor bean endosperm washeat-stable but the dialyzed enzyme preparation and the partiallypurified enzyme were labile against heat treatment at 57°C.When Mg++ was added to the partially purified enzyme in thepresence of isocitrate or NADP, the enzyme was stabilized againstheat treatment. Mn++, Ca++, Co++, Sr++ or Ba++ could be substitutedfor Mg++. Addition of only one of the factors, Mg++, isocitrateor NADP, had no effect on the heat stability. Moreover, a combinationof isocitrate and NADP did not establish stabilization. A divalentcation plays a central role, while adenine nucleotide, especiallyATP, may have an important part in stabilization. (Received August 14, 1972; )  相似文献   

15.
1. Polyphenol oxidase (o-diphenol : O2 oxidoreductase; E.C.1.10.3.1 [EC] ) was isolated from the other phenolases which werepresent in root-forming carrot callus, and its properties wereexamined. 2. The enzyme was purified about 45-fold over crudeextracts (precipitates between 40–70% saturation widiammonium sulfate) by a combination of Bio-gel filtration, protein-bagfiltration, and carboxymethyl cellulose chromatography. Thepurified oxidase was homogeneous according to polyacrylamidegel electrophoresis and Sephadex gel filtration. It was confirmedby CM-cellulose chromatography that the enzyme was absent incallus tissues without accompanying redifferentiation. 3. Themolecular weight of this oxidase was estimated to be 110,000-120,000 from molecular weight-mobility profiles on polyacrylamidegels containing sodium dodecyl sulfate and molecular size-elutionvolume correlations on Sephadex G-150 columns. 4. The enzymeoxidized o-diphenols but showed no detectable activity againstmonophenols. Pyrocatechol, dopamine, caffeic acid, and chlorogenicacid were effectual substrates of the enzyme with Km valuesranging from 10–3 M to 10–5M. The enzyme effectivelycatalyzed the oxidation of o-diphenols over the range of pH6.0 to 7.0 and was readily inactivated by heating. The enzymeactivity was slightly influenced by increasing ionic strength.The initial rate of the enzymic reaction was enhanced by additionof Cu2+, Co2+ and Mn2+ ions, and was reduced in the presenceof DTT, PCMPS, glycylglycine, and DIECA. (Received June 17, 1978; )  相似文献   

16.
A Ca2+-dependent protein kinase (CDPK) that has been partiallypurified and characterized previously [Yuasa and Muto (1992)Arch. Biochem. Biophys. 296: 175] was further purified to about20,000-fold from the soluble fraction of Dunaliella tertiolecta.The enzyme preparation contained 60- and 52-kDa polypeptidesboth of which phosphorylated casein as a substrate. Both polypeptidesshowed a Ca2+-dependent increase in mobility during SDS-PAGEand 45Ca2+-binding activity after SDS-PAGE and electroblottingonto a nitrocellulose membrane, suggesting that both the 60-and 52-kDa CDPKs directly bind Ca2+. The protein kinase inhibitors,K-252a and staurosporine, inhibited the CDPK competitively withrespect to ATP. An antibody raised against the 60-kDa CDPK crossreactedwith both the 60- and 52-kDa polypeptides. Both molecular specieswere autophosphorylated in the presence of Ca2+, and a highlyphosphorylated 80-kDa band appeared in addition to these phosphorylatedbands at 60 and 52 kDa in SDS-PAGE. However, the specific activityof CDPK was not changed by prior autophosphorylation when theautophosphorylated enzyme was assayed as a mixture of thesephosphorylated molecular species. Only the 60-kDa polypeptidewas immunodetected in subcellular fractions of Dunaliella cells.The 52-kDa polypeptide increased during storage of the enzyme.These results suggest that the 52-kDa polypeptide is a proteolyticartifact produced during purification. Immunoreactive bandsof 60-kDa were detected in extracts of several green algae butnot in extracts of higher plants or a brown alga. 1This research was partly supported by Grants-in-Aid from theMinistry of Education, Science and Culture, Japan (No. 06454013and 06304023) and Research Fellowship of the Japan Society forthe Promotion of Science for Young Sciencists. 2Research Fellow (PD) of the Japan Society for the Promotionof Science.  相似文献   

17.
L-Tyrosine carboxy-lyase (E. C. 4. 1. 1. 25) was extracted fromthe roots of barley seedlings and purified approximately 25fold. Optimum pH for the enzyme activity was found to be 7.3.The Km value for L-tyrosine was calulated as 4.5?10–4M.D-Isomer did not react with the enzyme. L-DOPA, m-tyrosine ando-tyrosine were decarboxylated to some extent. Pyridoxal phosphateactivated the enzyme 4 fold. Caffeic acid and p-coumaric acidare competitive inhibitors. Ki values were 4.5?10–5M forcaffeic acid and 1.6?10–4M for p-coumaric acid. L-DOPAand m-tyrosine had an inhibitory effect on the decarboxylationof L-tyrosine. Hydroxylamine, semicarbazide, p-CMB, Fe++, Cu++,and Hg++ inhibited the decarboxylation of tyrosine. Enzyme activitywas also found in extracts from Triticum aestivum, Zea maysand Cytisus scoparius. (Received November 30, 1973; )  相似文献   

18.
Two membrane fractions were obtained from 16%/26% and 34%/40%interfaces following discontinuous sucrose density gradientcentrifugation of a 10,000–80,000xg pellet from mung bean(Phaseolus mungo L.) roots. The ATPases in the fractions differedfrom each other in their sensitivity toward various inhibitors,activation with salts, dependence of activity on pH, and Kmfor ATP.Mg2+. Judging from their sensitivity toward inhibitors,the ATPases in the low and high density membranes are consideredmainly of tonoplast and plasma membrane origin, respectively.Both ATPases were activated by gramicidin D and nigericin. ATP-inducedquenching of quinacrine fluorescence in both fractions requiredMg2+ and permeant anions such as Cl and quenching wascollapsed by carbonylcyanide p-trifluoromethoxyphenyl hydrazone.The sensitivities of quenching to the inhibitors were essentiallythe same as those of ATPase activity in the membranes. Thesefindings suggest the involvement of ATPases in H+-pumping acrossa plasma membrane and tonoplast. (Received April 12, 1985; Accepted October 11, 1985)  相似文献   

19.
The olfactory discrimination process of male cabbage loopermoths, Trichoplusa ni (Hübner), was assessed by measuringtheir response to one of two emission sources within a windtunnel. The males discriminated between (1) Z7–12:Ac concentrations;(2) Z7–12:Ac alone and the volatile emission from excisedfemale sex pheromone glands; and (3) Z7–12:Ac and theemission from a mixture of six synthetic pheromone componentsthat mimics the volatile emissions of a female gland. Althoughmales could discriminate between a freshly excised female sexpheromone gland and 7.4x 10–11 M Z7–12:Ac, theycould not discriminate between a gland and 78.5x10–11M Z7–12:Ac. Males also could not discriminate betweenthe mixture of six volatile compounds and 28.7x10–11 Mof Z7–12:Ac. The data show that male cabbage looper mothshave difficulty discriminating between Z7–12:Ac aloneand in mixtures with other female-emitted volatile compounds.  相似文献   

20.
Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17 [EC] ) and mannitol-1-phosphatase(EC number yet unassigned) were detected in the brown algae,Spatoglossum pacificum and Dictyota dichotoma. The enzymes wereextracted from algal fronds and their properties were investigatedusing partially purified preparations. Mannitol-1-phosphatase shows maximum activity at pH 7. The enzymehad a narrow substrate specificity. The Km value for mannitol-1-phosphateis 8.3x10–4 M (30°C, pH 7.0). The enzyme is activatedby Mg++ and Mn++and is strongly inhibited by PCMB, Hg++and NaF. Mannitol-1-phosphate dehydrogenase showed maximum activitiesat pH values 6.5 and 10.2 in reductive and oxidative reactions,respectively. The dehydrogenase also showed narrow substratespecificity; mannitol-1-phosphate and NAD or fructose-6-phosphateand NADH2 are utilized, respectively, in oxidative and reductivereactions by the enzyme. Km values for these substrates andthe coenzymes are 2.5x10–4 M and 7.1x10–5 M forthe first pair and 2.8x10–4 M and 1.3x10–5 M forthe latter pair. This enzyme was strongly inhibited by PCMBand Hg++, but was only slightly affected by adenosine phosphates. Possible roles of these enzymes in the biosynthesis of mannitolin brown algae are discussed. 1 Contributions from the Shimoda Marine Biological Station ofTokyo Kyoiku University, No. 233. This work was supported inpart by a Grant-in-Aid for Co-operative Research from the Ministryof Education, Japan and in part by a grant to one of us (T.Ikawa) from the Matsunaga Science Foundation. 2 Present address: Chemical and Physical Laboratory, HoechstJapan Research Laboratory, Minamidai, Kawagoe, Japan. (Received February 22, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号