首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lucifer yellow CH (LY) uptake into intact leaves ofCommelina communis has been studied with conventional fluorescence microscopy as well as confocal laser scanning microscopy. LY, a highly fluorescent tracer for apoplastic transport in plants and fluid phase endocytosis in animal cells, accumulates in the vacuole of leaf cells. However, considerable differences in the ability to take up LY were observed among the various cell types. Mesophyll cells take up large amounts of the dye whereas epidermal cells, including guard and subsidiary cells, showed no fluorescence in their vacuoles. An exception to this are trichome cells which show considerable accumulation of LY. When introduced into the cytoplasm of mesophyll protoplasts ofC. communis by means of a patch-clamp pipette, LY does not enter the vacuole. This supports the contention that exogenous LY can only gain access to the vacuole via endocytosis. Differences in the capacity for LY uptake may therefore reflect differences in endocytotic activity.Abbreviations CLSM Confocal laser scanning microscopy - DIC differential interference contrast - LY Lucifer yellow CH - PM plasma membrane  相似文献   

2.
VMA3, a structure gene of the vacuolar membrane H(+)-ATPase subunit c of Saccharomyces cerevisiae, has been cloned and characterized. The VMA3 gene encodes a hydrophobic polypeptide with 160 amino acids as reported previously by Nelson and Nelson (Nelson, H., and Nelson, N. (1989) FEBS Lett. 247, 147-153). Peptide sequence analysis indicated that the VMA3 gene product lacks N-terminal methionine and does not have a cleavable signal sequence. To investigate functional and structural roles of the subunit c for vacuolar acidification and protein transport to the vacuole, haploid mutants with the disrupted VMA3 gene were constructed. The vma3 mutants can grow in nutrient-enriched medium, but they have completely lost the vacuolar membrane H(+)-ATPase activity and the ability of vacuolar acidification in vivo. The subunit c was found to be indispensable for the assembly of subunits a and b of the H(+)-ATPase complex. The disruption of the VMA3 gene causes yeast cells with considerable lesions in vacuolar biogenesis and protein transport to the vacuole and inhibits endocytosis of lucifer yellow CH completely.  相似文献   

3.
H Riezman 《Cell》1985,40(4):1001-1009
Yeast cells have been shown to internalize lucifer yellow CH by endocytosis. Internalization of the fluorescent dye is time-, temperature-, and energy-dependent, it is not saturable, and the dye is accumulated in the vacuole. Some of the yeast secretory mutants that accumulate endoplasmic reticulum or Golgi bodies are defective for endocytosis at restrictive temperature, while others are not. All of the mutants that accumulate secretory vesicles are defective for endocytosis. These results suggest that efficient transport of proteins from the endoplasmic reticulum to the Golgi apparatus and from the Golgi to secretory vesicles is not necessary for endocytosis. In contrast, endocytosis may be obligatorily coupled with the latest steps of secretion.  相似文献   

4.
It is widely accepted that the mix of flavonoids in the cell vacuole is the source of flavonoid based petal colour, and that analysis of the petal extract reveals the nature and relative levels of vacuolar flavonoid pigments. However, it has recently been established with lisianthus flowers that some petal flavonoids can be excluded from the vacuolar mix through deposition in the cell wall or through complexation with proteins inside the vacuole, and that these flavonoids are not readily extractable. The present work demonstrates that flavonoids can also be compartmented within the cell cytoplasm. Using adaxial epidermal peels from the petals of lisianthus (Eustoma grandiflorum), Lathyrus chrysanthus and Dianthus caryophyllus, light and laser scanning confocal microscopy studies revealed a significant concentration of petal flavonoids in the cell cytoplasm of some tissues. With lisianthus, flavonoid analyses of isolated protoplasts and vacuoles were used to establish that ca 14% of petal flavonoids are located in the cytoplasm (cf. 30% in the cell wall and 56% in the vacuole). The cytoplasmic flavonoids are predominantly acylated glycosides (cf. non-acylated in the cell wall). Flavonoid aggregation on a cytoplasmic protein substrate provides a rational mechanism to account for how colourless flavonoid glycosides can produce yellow colouration in petals, and perhaps also in other plant parts. High vacuolar concentrations of such flavonoids are shown to be insufficient.  相似文献   

5.
Summary Protoplasts fromChenopodium album suspension culture show large, up to 5-fold, changes in surface area upon hypertonic or hypotonie treatment. These surface area variations cannot be explained by elastic stretching of the plasmalemma. An exchange of membrane material between the plasmalemma and an internal membrane source takes place. Fluid-phase uptake experiments with the fluorescence dyes 5, 6-carboxyfluorescein and Lucifer yellow CH demonstrated that osmotic shrinkage of protoplasts is accompanied by vesicular uptake of the external medium into protoplast cytoplasm. Confocal laser scanning microscopy, as well as conventional fluorescence microscopy, revealed the number, diameter and distribution of the osmocytotic vesicles at different osmotic levels. The rate of osmocytotic vesicle uptake was higher in the presence of calcium chloride than in the presence of EDTA in the external medium. At 6.9 mM calcium chloride we observed a loss of vesicular fluorescence upon returning protoplasts to 0.4 M from 0.8 M sorbitol.  相似文献   

6.
K. M. Wright  K. J. Oparka 《Planta》1989,179(2):257-264
The highly fluorescent dye Lucifer Yellow CH (LYCH), now in common use in microinjection studies, has been shown to enter the vacuole of a range of plant-cell protoplasts from the external medium. Uptake was quantified by lysing the protoplasts following incubation and determining the amount of LYCH incorporated by spectrofluorimetry. Uptake was biphasic with respect to both time and substrate concentration, enhanced at low pH and inhibited by low temperature and metabolic inhibitors. The kinetics of uptake showed several similarities with those reported for the fluid-phase endocytosis of LYCH in animal cells and yeast cells. A calculated membrane permeability coefficient for LYCH, based on the observed rates of uptake, was too high to be consistent with simple diffusion of the undissociated form of the molecule and inconsistent with the membrane-impermeant properties of the dye. The data are discussed in the light of the possibility of fluid-phase endocytosis versus active transmembrane transport.Abbreviations CCCP carbonyl cyanide M-chlorophenyl hydrazone - LYCH Lucifer Yellow CH  相似文献   

7.
Endocytosis was studied in OK epithelial cells, an established cell line from opossum kidney. The presence of fluid-phase endocytosis in these cells was demonstrated by measuring cell uptake of lucifer yellow and horseradish peroxidase. The intracellular distribution of lucifer yellow fluorescence was consistent with uptake by endocytosis. Endocytosis was inhibited in medium made hyperosmolar by addition of sucrose. In hyperosmolar medium the action of parathyroid hormone on Na+/phosphate cotransport was significantly diminished. We suggest that an intact endocytic mechanism is required for the full inhibitory effect of parathyroid hormone on Na+/phosphate cotransport.  相似文献   

8.
During fluid phase endocytosis (FPE) in plant storage cells, the vacuole receives a considerable amount of membrane and fluid contents. If allowed to accumulate over a period of time, the enlarging tonoplast and increase in fluids would invariably disrupt the structural equilibrium of the mature cells. Therefore, a membrane retrieval process must exist that will guarantee membrane homeostasis in light of tonoplast expansion by membrane addition during FPE. We examined the morphological changes to the vacuolar structure during endocytosis in red beet hypocotyl tissue using scanning laser confocal microscopy and immunohistochemistry. The heavily pigmented storage vacuole allowed us to visualize all architectural transformations during treatment. When red beet tissue was incubated in 200 mM sucrose, a portion of the sucrose accumulated entered the cell by means of FPE. The accumulation process was accompanied by the development of vacuole-derived vesicles which transiently counterbalanced the addition of surplus endocytic membrane during rapid rates of endocytosis. Topographic fluorescent confocal micrographs showed an ensuing reduction in the size of the vacuole-derived vesicles and further suggest their reincorporation into the vacuole to maintain vacuolar unity and solute concentration.  相似文献   

9.
酵母细胞中Pkh1/2信号影响细胞内吞功能.Pil1因与Pkh1/2形成复合物并可被 其磷酸化引起关注.新近发现一个大分子复合物eisosome 是内吞的标志性位点, 而Pil1是其主要成分.前期研究发现,Pil1的磷酸化状态对eisosome结构完整至关 重要.本研究通过检测Pkh1/2突变菌的生长和萤光黄(LY) 染料在空泡聚集情况 ,发现由于Pkh1/2突变导致的生长抑制和液相内吞功能丧失,可部分由过表达的 Pil1补偿,得出结论是Pkh1/2-Pil1信号在一定程度上调节细胞内吞.  相似文献   

10.
Vacuole development in cultured evacuolated oat mesophyll protoplasts   总被引:4,自引:0,他引:4  
Oat leaf mesophyll protoplasts were evacuolated and shown to develop acidic vacuoles when cultured for 3 d. Vacuole development was followed by cell wall formation. Developing vacuoles, stained with acridine orange, took the form of a tubular network when viewed by confocal laser scanning microscopy. The tubules expanded and fused to form a series of interconnected vacuoles. When thin sectioned material was examined by transmission electron microscopy, the tubular network appeared as a number of small, expanding vesicles. The vacuolar H+-ATPase, H+-PPase and a membrane integral protein of 23 kDa (VM23) were shown, by Western blotting, to be removed from protoplasts following evacuolation. After 5 d culture the H+-ATPase and H+-PPase, but not VM23, were detectable in microsomal fractions.This study describes, for the first time, successful vacuole regeneration in a monocotyledenous plant. This regeneration follows a similar pattern to that seen in non-cereal protoplasts.  相似文献   

11.
Because of its membrane-impermeant-properties Lucifer Yellow-CH (LY) is regarded by animal cell biologists as an ideal tracer for fluid-phase endocytosis. When presented to plant cells or protoplasts this fluoroprobe accumulates in the vacuole. On the other hand there are many cases where LY does not enter the vacuole when loaded into the plant cytosol. These, superficially divergent, results have previously been explained in terms of endocytosis whereby access to the vacuole is considered to occur through vesicle transport. This interpretation has now been challenged in three recent papers where the benzoic acid derivative, probenecid, has been shown to prevent vacuolar LY accumulation in plants. Since probenecid is a well-known inhibitor of organic anion transport in animal cells it has been argued that anion carriers capable of transporting LY might also exist at the plasma membrane and tonoplast of plant cells. Unfortunately probenecid has rarely, if ever, been used in plant transport studies. The fact that it is a weak acid, whose inhibitory effects are observed at concentrations of around 1 mM suggests that caution should prevail when interpreting results obtained with probenecid. The purpose of this article is therefore to highlight the current controversy surrounding LY uptake by plants and to critically evaluate the recent probenecid data.  相似文献   

12.
R. Roszak  S. Rambour 《Protoplasma》1997,199(3-4):198-207
Summary Lucifer Yellow (LY), a membrane-impermeant anion, was able to enterArabidopsis thaliana cells. LY was taken up by fluid-phase endocytosis and a plasmalemmal anionic carrier mechanism. Both mechanisms were shown to be concentration-dependent. At 0.1 mg/ml, LY was mainly taken up via fluid-phase endocytosis and concentrated in vesicular-like structures. At a ten-fold higher concentration (1 mg/ml), a plasmalemmal anionic carrier system allowed LY uptake and its accumulation in the central vacuole by a vacuolar anionic transporter. Chloroquine, cytochalasin B, monensin, and phorbol-12-myristate-13-acetate (PMA) hindered LY endocytosis. Brefeldin A did not modify LY uptake. The probenecidsensitive carrier uptake machinery showed sensitivity to chloroquine and PMA. Therefore the probenecid-sensitive transport mechanism seems to be complex and involve both acidification of a compartment and protein kinase C activity.Abbreviations CH carbohydrazide - DMSO dimethylsulfoxide - LY Lucifer Yellow - MES 2-[N-morpholino]-ethanesulfonic acid - MS Murashige and Skoog's medium - PMA phorbol-12-myristate-13-acetate - NAA naphthalene acetic acid  相似文献   

13.
Yeast mutants that are defective in acidification of the lysosome-like vacuole are able to grow at pH 5.5, but not at pH 7. Here, we present evidence that endocytosis is required for this low pH-dependent growth and use this observation to develop a screen for mutants defective in endocytosis. By isolating mutants that cannot grow when they lack the 60-kD vacuolar ATPase subunit (encoded by the VAT2 gene), we isolated a number of vat2-synthetic lethal (Vsl-) mutant strains. Seven of the Vsl- mutants are defective in endocytosis. Four of these mutant strains (end8-1, end9-1, end10-1, and end11-1) show altered uptake of the endocytosed ligand, alpha-factor, and three (end12-1, end12-2, and end13-1) are probably defective in transfer of internalized material to the vacuole. Most of the mutations also confer a strong Ts- growth defect. The mutants defective in uptake of alpha-factor sort newly synthesized vacuolar proteins correctly, while those which may be defective in subsequent transport steps secrete at least a fraction of the newly synthesized soluble vacuolar proteins. The mutations that result in a defect in alpha-factor uptake are not allelic to any of the genes previously shown to encode endocytic functions.  相似文献   

14.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

15.
The small GTPase rab5 has been shown to represent a key regulator in the endocytic pathway of mammalian cells. Using a PCR approach to identify rab5 homologs in Saccharomyces cerevisiae, two genes encoding proteins with 54 and 52% identity to rab5, YPT51 and YPT53 have been identified. Sequencing of the yeast chromosome XI has revealed a third rab5-like gene, YPT52, whose protein product exhibits a similar identity to rab5 and the other two YPT gene products. In addition to the high degree of identity/homology shared between rab5 and Ypt51p, Ypt52p, and Ypt53p, evidence for functional homology between the mammalian and yeast proteins is provided by phenotypic characterization of single, double, and triple deletion mutants. Endocytic delivery to the vacuole of two markers, lucifer yellow CH (LY) and alpha-factor, was inhibited in delta ypt51 mutants and aggravated in the double ypt51ypt52 and triple ypt51ypt52ypt53 mutants, suggesting a requirement for these small GTPases in endocytic membrane traffic. In addition to these defects, the here described ypt mutants displayed a number of other phenotypes reminiscent of some vacuolar protein sorting (vps) mutants, including a differential delay in growth and vacuolar protein maturation, partial missorting of a soluble vacuolar hydrolase, and alterations in vacuole acidification and morphology. In fact, vps21 represents a mutant allele of YPT51 (Emr, S., personal communication). Altogether, these data suggest that Ypt51p, Ypt52p, and Ypt53p are required for transport in the endocytic pathway and for correct sorting of vacuolar hydrolases suggesting a possible intersection of the endocytic with the vacuolar sorting pathway.  相似文献   

16.
Yersinia enterocolitica (Ye) targets mouse dendritic cells (DCs) and inhibits their ability to trigger T cell activation. Here we have investigated whether Ye might interfere with antigen presentation in DCs. Infection of DCs with the Ye wild-type strain reduced OVA uptake by DCs as demonstrated by flow cytometry and confocal laser scan microscopy. In contrast, DCs infected with Yersinia outer protein P (YopP)-deficient mutant strain rapidly internalized OVA. Furthermore, transfection of DCs with YopP, but not with a cysteine protease deficient YopP-C172A mutant, reduced uptake of OVA. This finding suggests that YopP, a virulence factor of Ye, inhibits OVA uptake by DCs. By the use of MAPK inhibitors we provide evidence that YopP mediates reduction of OVA uptake by its ability to block MAPK signalling pathways in host cells. Using transferrin (Tf) as specific marker for clathrin-mediated endocytosis (CME) and lucifer yellow (LY) as specific marker for macropinocytosis (MP) we could show that YopP inhibits CME, whereas other Yops inhibit MP. In keeping with these data, activation and proliferation of OVA-specific T cells was reduced when DCs were treated with MAPK inhibitors. Together, our data demonstrate that (i) MAPK play an important role in antigen uptake by CME in DCs, and (ii) that YopP inhibits this pathway of antigen uptake in DCs, which might contribute to evasion of adaptive immunity.  相似文献   

17.
Barley (Hordeum vulgare) primary leaves synthesize saponarin, a 2-fold glucosylated flavone (apigenin 6-C-glucosyl-7-O-glucoside), which is efficiently accumulated in vacuoles via a transport mechanism driven by the proton gradient. Vacuoles isolated from mesophyll protoplasts of the plant line anthocyanin-less310 (ant310), which contains a mutation in the chalcone isomerase (CHI) gene that largely inhibits flavonoid biosynthesis, exhibit strongly reduced transport activity for saponarin and its precursor isovitexin (apigenin 6-C-glucoside). Incubation of ant310 primary leaf segments or isolated mesophyll protoplasts with naringenin, the product of the CHI reaction, restores saponarin biosynthesis almost completely, up to levels of the wild-type Ca33787. During reconstitution, saponarin accumulates to more than 90% in the vacuole. The capacity to synthesize saponarin from naringenin is strongly reduced in ant310 miniprotoplasts containing no central vacuole. Leaf segments and protoplasts from ant310 treated with naringenin showed strong reactivation of saponarin or isovitexin uptake by vacuoles, while the activity of the UDP-glucose:isovitexin 7-O-glucosyltransferase was not changed by this treatment. Our results demonstrate that efficient vacuolar flavonoid transport is linked to intact flavonoid biosynthesis in barley. Intact flavonoid biosynthesis exerts control over the activity of the vacuolar flavonoid/H(+)-antiporter. Thus, the barley ant310 mutant represents a novel model system to study the interplay between flavonoid biosynthesis and the vacuolar storage mechanism.  相似文献   

18.
Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum. We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)-anchored and cytoplasmic proteins, associated with detergent-resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.FALCIPARUM: vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM-associated GPI-anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non-endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.  相似文献   

19.
Endocytosis in plants   总被引:4,自引:0,他引:4  
Endocytosis in animal cells has been heavily documented. Both fluid-phase and receptor-mediated modes of uptake have been frequently studied, and the endocytic pathway is well defined. This contrasts markedly with the situation in plants where our knowledge of this process is still rudimentary. Partly responsible for this situation has been the view, widely held among plant physiologists, that because of turgor, endocytosis cannot occur in plant cells. As discussed below, the case against endocytosis is no longer water-tight.
Endocytosis is a fact in protoplasts. It can be demonstrated with electron-dense tracers as well as with membrane impermeant dye Lucifer Yellow CH. The latter has also been used with success on both suspension-cultured and tissue cells of higher plants, suggesting that fluid-phase endocytosis is also a feature of cells with walls. Through the application of fluorescently labelled elicitor molecules, which specifically bind to the cell surface of suspension-cultured cells, it has also been possible to provide convincing evidence for the operation of receptor-mediated endocytosis in plants. A number of studies on protoplasts and cells clearly indicate that endocytosis in plants can be mediated by coated pits in the plasma membrane. At least one of the organelles that lie on the endocytic pathway in plants has a structurally similar counterpart in animal cells: the multivesicular body. The first recipient of internalized molecules is the partially coated reticulum, although its relationship to the Golgi apparatus and Golgi function remain to be clarified. The final target for endocytosis in plants appears to be the vacuole.  相似文献   

20.
The role of ATP-binding cassette (ABC) proteins such as multidrug resistance-associated proteins (MRPs) is critical in drug resistance in cancer cells and in plant detoxification processes. Due to broad substrate spectra, specific modulators of these proteins are still lacking. Sulfonylureas such as glibenclamide are used to treat non-insulin-dependent diabetes since they bind to the sulfonylurea receptor. Glibenclamide also inhibits the cystic fibrosis transmembrane conductance regulator, p-glycoprotein in animals and guard cell ion channels in plants. To investigate whether this compound is a more general blocker of ABC transporters the sensitivity of ABC-type transport processes across the vacuolar membrane of plants and yeast towards glibenclamide was evaluated. Glibenclamide inhibits the ATP-dependent uptake of beta-estradiol 17-(beta-D-glucuronide), lucifer yellow CH, and (2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein. Transport of glutathione conjugates into plant but not into yeast vacuoles was drastically reduced by glibenclamide. Thus, irrespective of the homologies between plant, yeast and animal MRP transporters, specific features of plant vacuolar MRPs with regard to sensitivity towards sulfonylureas exist. Glibenclamide could be a useful tool to trap anionic fluorescent indicator dyes in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号