首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of phosphatidylcholine to lysophosphatidylcholine occurs during oxidative modification of low density lipoproteins (LDL). In this study, we have shown that this phospholipid hydrolysis is brought about by an LDL-associated phospholipase A2 that can hydrolyze oxidized but not intact LDL phosphatidylcholine. The chemical nature of the oxidized phospholipids that can act as substrates for this enzyme was not fully characterized, but we hypothesized that the specificity of the enzyme for oxidized LDL phosphatidylcholine might be explained by fragmentation of polyunsaturated sn-2 fatty acyl groups in LDL phosphatidylcholine during oxidation. To facilitate characterization of this enzyme, we therefore selected a fluorescent phosphatidylcholine substrate that had a short-chain, polar residue in the sn-2 position: 1-palmitoyl 2-(6-[7-nitrobenzoxadiazolyl]amino) caproyl phosphatidylcholine, (C6NBD PC). This substrate was efficiently hydrolyzed by LDL, but the dodecanoyl analogue of C6NBD PC, which differed only in that a 12-carbon rather than a 6-carbon acyl derivative was present in the sn-2 position, was not hydrolyzed. The phospholipase activity was heat-stable, calcium-independent, and was inhibited by the serine esterase inhibitors phenylmethylsulfonyl-fluoride and diisopropylfluorophosphate, but was resistant to p-bromophenacylbromide and dithiobisnitrobenzoic acid. The phospholipid hydrolysis could not be attributed to the action of lecithin:cholesterol acyltransferase or lipoprotein lipase. Nearly all of the activity in EDTA-anticoagulated normal plasma was physically associated with apoB-containing lipoproteins, but this apoprotein was not essential as enzyme activity was present in plasma from abetalipoproteinemic patients. These properties are very similar to those recently reported for human plasma platelet-activating factor (PAF) acetylhydrolase. In the present study, we found that acylhydrolase activity against C6NBD PC, PAF, and oxidized phosphatidylcholine copurfied through gel filtration and ion-exchange chromatography. Substrate competition was demonstrated between C6NBD PC, PAF, and oxidized 2-arachidonyl phosphatidylcholine, suggesting that a single enzyme was active against all three substrates. The enzyme had an apparent molecular weight of 40,000-45,000 by high pressure gel exclusion chromatography. Inhibition of this activity with disopropyfluorophosphate prior to oxidative modification of LDL prevented phospholipid hydrolysis but did not affect the production of thiobarbituric acid reactive compounds or the change in electrophoretic mobility. In addition, this inhibition of phospholipase did not prevent the rapid degradati  相似文献   

2.
Platelet-activating factor acetylhydrolases (PAF-AHs) are unique PLA2s which hydrolyze the sn-2 ester linkage in PAF-like phospholipids with a marked preference for very short acyl chains, typically acetyl. The recent solution of the crystal structure of the alpha(1) catalytic subunit of isoform Ib of bovine brain intracellular PAF-AH at 1.7 A resolution paved the way for a detailed examination of the molecular basis of substrate specificity in this enzyme. The crystal structure suggests that the side chains of Thr103, Leu48 and Leu194 are involved in substrate recognition. Three single site mutants (L48A, T103S and L194A) were overexpressed and their structures were solved to 2.3 A resolution or better by X-ray diffraction methods. Enzyme kinetics showed that, compared with wild-type protein, all three mutants have higher relative activity against phospholipids with sn-2 acyl chains longer than an acetyl. However, for each of the mutants we observed an unexpected and substantial reduction in the V(max) of the reaction. These results are consistent with the model in which residues Leu48, Thr103 and Leu194 indeed contribute to substrate specificity and in addition suggest that the integrity of the specificity pocket is critical for the expression of full catalytic function, thus conferring very high substrate selectivity on the enzyme.  相似文献   

3.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid synthesized by a variety of cell types upon appropriate stimulation. PAF is a potent hypotensive factor and it activates platelets and inflammatory cells at concentrations as low as 10(-10) M. Removal of the acetyl moiety at the sn-2 position abolishes the biological activity and this reaction is catalyzed by a specific acetylhydrolase present in plasma and animal tissues. Ultracentrifugation in density gradients showed that 30% of the activity is associated with high density lipoproteins and 70% with low density lipoproteins. We have purified the plasma low density lipoprotein-associated activity to near homogeneity using a rapid assay based on the separation of [3H]acetate from 1-O-alkyl-2-[3H]acetyl-sn-glycerol-3-phosphocholine on disposable reversed-phase columns. The enzyme was purified by 25,000-fold and approximately 10% of the starting activity was recovered. Plasma PAF-acetylhydrolase has an apparent molecular weight of 43,000, does not require calcium, has preference for micellar versus monomeric substrate, and exhibits surface dilution kinetics. The purified protein has an apparent Km of 13.7 microM and a Vmax of 568 mumol/h/mg with micellar PAF. It can act both on 1-O-alkyl and 1-acyl substrates and on ethanolamine analogs of PAF. However, the enzyme has a marked preference for the sn-2 acetyl residue and therefore can be considered as a specific PAF-acetylhydrolase.  相似文献   

4.
Platelet-activating factor (PAF) is a phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with diverse physiological effects. It has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. Plasma contains an enzyme, PAF acetylhydrolase, that catalyzes the degradation of PAF, and the level of this enzyme may regulate the concentration of PAF in the blood and extracellular spaces under some conditions. Thus, the cellular source(s) of this enzyme and the factors that regulate its synthesis and secretion are issues that may have important physiological and pathological implications. We found that cultures of Hep G2, a human hepatocarcinoma line, secreted PAF acetylhydrolase activity. Optimal secretion occurred in medium that contained serum, and the newly secreted PAF acetylhydrolase was associated with high density and low density lipoproteins (LDL and HDL, respectively), just as the enzyme is in plasma. In the absence of serum. PAF acetylhydrolase was secreted with a particle that had a density similar to HDL. Apolipoproteins B and E were found in the same fractions. We tested the effects of a variety of hormones on the secretion of PAF acetylhydrolase and found that secretion was inhibited by 17 alpha-ethynylestradiol with a maximal effect at 30 microM. This may account for the observation of others that estrogens reduce the activity of PAF acetylhydrolase in the plasma. The PAF acetylhydrolase secreted by Hep G2 cells appeared to be identical to the enzyme in human plasma based on substrate specificity, association with LDL and HDL, response to inhibitors, and reactivity with antibodies against the plasma PAF acetylhydrolase. In conclusion, we have demonstrated that hepatocytes in culture secrete a PAF acetylhydrolase that is apparently identical to the plasma form. The secretion is constitutive but may also be regulated in response to hormonal stimulation.  相似文献   

5.
Platelet-activating factor (PAF) is a bioactive phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) synthesized by a variety of mammalian cell types. PAF induces hypotension, and activates neutrophils and platelets, among other actions. Removal of the acetyl moiety abolishes biological activity, so this reaction may regulate the concentration of PAF and its physiological effects. We have studied the significance of this reaction, which is catalyzed in vitro by an acetylhydrolase present in mammalian plasma, blood cells, and tissues. We have shown that the plasma PAF-acetylhydrolase is responsible for the degradation of PAF in whole human blood and that alternate pathways for PAF degradation in plasma or blood cells are negligible. Human plasma PAF-acetylhydrolase is associated with low and high density lipoproteins (LDL and HDL with apoE). We have confirmed that the activity is a stable component of these particles by density gradient ultracentrifugation, chromatography on heparin-agarose, and immunoprecipitation. The LDL-associated activity accounts for most or all of the PAF degradation that occurs in plasma ex vivo, while the HDL-associated activity contributes little to this process. However, the two activities likely are due to a single protein since the HDL- and LDL-associated PAF-acetylhydrolase activities can transfer from one lipoprotein to the other. These transfer processes are pH-dependent and specific, since they only occur from LDL to a well characterized subclass of HDL (apoE-containing HDL) and vice versa. We discuss the equilibrium between the two particles and the role that this process may have in vivo.  相似文献   

6.
Human plasma platelet-activating factor (PAF) acetylhydrolase hydrolyzes the sn-2 acetyl residue of PAF, but not phospholipids with long chain sn-2 residues. It is associated with low density lipoprotein (LDL) particles, and is the LDL-associated phospholipase A2 activity that specifically degrades oxidatively damaged phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1989) J. Biol. Chem. 264, 5331-5334). To identify potential substrates, we synthesized phosphatidylcholines with sn-2 residues from two to nine carbon atoms long, and found the V/k ratio decreased as the sn-2 residue was lengthened: the C5 homolog was 50%, the C6 20%, while the C9 homolog was only 2% as efficient as PAF. However, the presence of an omega-oxo function radically affected hydrolysis: the half-life of the sn-2 9-aldehydic homolog was identical to that of PAF. We oxidized [2-arachidonoyl]phosphatidylcholine and isolated a number of more polar phosphatidylcholines. We treated these with phospholipase C, derivatized the resulting diglycerides for gas chromatographic/mass spectroscopic analysis, and found a number of diglycerides where the m/z ratio was consistent with a series of short to medium length sn-2 residues. We treated the polar phosphatidylcholines with acetylhydrolase and derivatized the products for analysis by gas chromatography/mass spectroscopy. The liberated residues were more polar than straight chain standards and had m/z ratios from 129 to 296, consistent with short to medium chain residues. Therefore, oxidation fragments the sn-2 residue of phospholipids, and the acetylhydrolase specifically degrades such oxidatively fragmented phospholipids.  相似文献   

7.
The production of platelet-activating factor (PAF) and PAF-like phospholipids that also bind the PAF receptor are implicated in numerous pathological situations including bacterial endotoxemia and injury-induced oxidative damage. PAF and PAF-like phospholipids are hydrolyzed and inactivated by the enzyme PAF acetylhydrolase. In the intact rat, infusion of lipopolysaccharide (LPS) into a mesenteric vein served as an acute, liver-focused model of endotoxemia. We determined that the liver responds to LPS exposure with the production of plasma-type PAF acetylhydrolase mRNA and protein expression specifically in the resident macrophages of the liver. Liver macrophages, defined immunohistochemically using antibodies against ED1, present in livers from saline-treated animals contained no detectable PAF acetylhydrolase. Twenty-four hours following in vivo LPS administration, immunohistochemistry detected a slight increase in the number of ED1 staining cells and the ED1-positive cells now contained an abundance of PAF acetylhydrolase. The systemic administration of LPS resulted in increased expression of PAF acetylhydrolase in several tissues. Of the tissues examined, the greatest increase in PAF acetylhydrolase expression was observed in lung followed by increases in spleen, liver, kidney, and thymus. Additionally, the expression of PAF acetylhydrolase mRNA increased in circulating leukocytes and in peritoneal macrophages in response to systemic exposure to LPS. We examined the regulation of PAF acetylhydrolase expression and demonstrated the administration of the PAF receptor antagonists, BN 50739 and WEB 2170, inhibited by 50% the increase in PAF acetylhydrolase expression in response to LPS. The up-regulation of the plasma-type PAF acetylhydrolase expression constitutes an important mechanism for elevating the local and systemic ability to inactivate PAF and oxidized phospholipids in order to minimize PAF-mediated pathophysiology consequent from exposure to endotoxin. The abundance of PAF acetylhydrolase production in the liver lobule likely limits endotoxin-mediated tissue damage due to PAF synthesis.  相似文献   

8.
Acetylhydrolase, the enzyme which inactivates platelet-activating factor (PAF, 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine), was selectively released from bovine platelets by aggregation with physiological concentrations (0.1-10 nM) of PAF with no cell lysis. The release of the acetylhydrolase paralleled that of serotonin. The acetylhydrolase released was active over a broad pH range (pH 5.4-8.6) and was not affected by Ca2+ (1-4 mM) or EDTA (1-8 mM). The Km value of the enzyme was 4.6 microM. Net specific acetylhydrolase activity recovered in the 130,000 x g supernatant after stimulation with PAF could be determined in the presence of EDTA without the activity of Ca2+-dependent phospholipase A2 which was also released from the cells at the same concentration of PAF. The acetylhydrolase was inhibited competitively by specific PAF antagonists, rac-3-(N-n-octadecylcarbamoyloxy)-2-methyoxypropyl-2-thiazolioe thyl phosphate (CV-3988) and (2RS)-1-O-hexadecyl-2-O-ethyl-3-O-(7-thiazolinoheptyl)-glycerol methanesulfonate (ONO-6040). Their Ki values for the enzyme were 1.17 microM and 0.84 microM, respectively. The release of the enzyme could also be detected when the platelets were aggregated with ADP (2.3 microM) or thrombin (0.5 unit). These results suggest that the enzyme released from the aggregated platelets to the blood plasma may also have a physiological function cooperating with the plasma acetylhydrolase.  相似文献   

9.
Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A2. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5 angstroms. It has a classic lipase alpha/beta-hydrolase fold, and it contains a catalytic triad of Ser273, His351, and Asp296. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser273. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.  相似文献   

10.
Platelet-activating factor acetylhydrolase (PAF-AH) is transported by lipoproteins in plasma and is thought to possess both anti-inflammatory and anti-oxidative activity. It has been reported that PAF-AH is recovered primarily in small, dense LDL and HDL following ultracentrifugal separation of lipoproteins. In the present studies, we aimed to further define the distribution of PAF-AH among lipoprotein fractions and subfractions, and to determine whether these distributions are affected by the lipoprotein isolation strategy (FPLC versus sequential ultracentrifugation) and LDL particle distribution profile. When lipoproteins were isolated by FPLC, the bulk (~85%) of plasma PAF-AH activity was recovered within LDL-containing fractions, whereas with ultracentrifugation, there was a redistribution to HDL (which contained ~18% of the activity) and the d>1.21 g/ml fraction (which contained ~32%). Notably, re-ultracentrifugation of isolated LDL did not result in any further movement of PAF-AH to higher densities, suggesting the presence of dissociable and nondissociable forms of the enzyme on LDL. Differences were noted in the distribution of PAF-AH activity among LDL subfractions from subjects exhibiting the pattern A (primarily large, buoyant LDL) versus pattern B (primarily small, dense LDL) phenotype. In the latter group, there was a relative depletion of PAF-AH activity in subfractions in the intermediate to dense range (d=1.039–1.047 g/ml) with a corresponding increase in enzyme activity recovered within the d>1.21 g/ml ultracentrifugal fraction. Thus, there appears to be a greater proportion of the dissociable form of PAF-AH in pattern B subjects. In both populations, most of the nondissociable activity was recovered in a minor small, dense LDL subfraction. Based on conjugated dienes as a measure of lipid peroxidation, variations in PAF-AH activity appeared to contribute to variations in oxidative behavior among ultracentrifugally isolated LDL subfractions. The physiologic relevance of PAF-AH dissociability and the minor PAF-AH-enriched oxidation-resistant LDL subpopulation remains to be determined.  相似文献   

11.
The platelet-activating factor acetylhydrolases are enzymes that were initially characterized by their ability to hydrolyze platelet-activating factor (PAF). In human plasma, PAF acetylhydrolase (EC 3.1.1.47) circulates in a complex with low density lipoproteins (LDL) and high density lipoproteins (HDL). This association defines the physical state of PAF acetylhydrolase, confers a long half-life, and is a major determinant of its catalytic efficiency in vivo. The lipoprotein-associated enzyme accounts for all of the PAF hydrolysis in plasma but only two-thirds of the protein mass. To characterize the enzyme-lipoprotein interaction, we employed site-directed mutagenesis techniques. Two domains within the primary sequence of human PAF acetylhydrolase, tyrosine 205 and residues 115 and 116, were important for its binding to LDL. Mutation or deletion of those sequences prevented the association of the enzyme with lipoproteins. When residues 115 and 116 from human PAF acetylhydrolase were introduced into mouse PAF acetylhydrolase (which normally does not associate with LDL), the mutant mouse PAF acetylhydrolase associated with lipoproteins. To analyze the role of apolipoprotein (apo) B100 in the formation of the PAF acetylhydrolase-LDL complex, we tested the ability of PAF acetylhydrolase to bind to lipoproteins containing truncated forms of apoB. These studies indicated that the carboxyl terminus of apoB plays a key role in the association of PAF acetylhydrolase with LDL. These data on the molecular basis of the PAF acetylhydrolase-LDL association provide a new level of understanding regarding the pathway for the catabolism of PAF in human blood.  相似文献   

12.
Platelet-activating factor (PAF) is metabolized by a specific enzyme, PAF acetylhydrolase, which may play an important role in the manifestation of the biological activities of PAF in vivo. The activity of PAF acetylhydrolase in plasma of patients with ischemic stroke was higher than that in healthy controls. The incidence of irreversible platelet aggregation in response to PAF, as well as to ADP, was found to be higher in patients than in controls. The patients whose platelets responded with irreversible aggregation to PAF displayed a higher activity of plasma PAF acetylhydrolase than those with only reversible aggregation. In controls, PAF acetylhydrolase activity correlated positively, although weakly, with LDL-cholesterol, which may reflect the major role of LDL in carrying this enzyme. However, since there was no significant difference in plasma levels of lipids and apoproteins between patients and controls (except for apo B) and there was no significant relationship between the enzyme activity and the levels of other lipids and apoproteins, it is unlikely that increased plasma level of PAF acetylhydrolase activity in stroke patients is accounted for by an abnormality of lipoprotein metabolism. Platelet hyperfunction may be associated with augmented generation of PAF, which, in turn, may bring about the induction of the inactivating enzyme, PAF acetylhydrolase.  相似文献   

13.
We have measured activity of platelet-activating factor (PAF) acetylhydrolase, an enzyme that specifically inactivates PAF, in plasma from patients with essential hypertension and healthy controls. The average activities in 34 patients and 22 controls were 113 +/- 60 and 79 +/- 32 nmol/ml/min, respectively, and the difference was significant (p less than 0.05). Approximately three fourths of the total plasma activity was recovered in LDL, with the remainder in HDL; and there was a significant difference in the activity associated with the LDL between patients and controls. The relative distribution of the activity among lipoproteins was almost equal in the two groups, and there was no difference in plasma lipids or apoproteins between them. In patients there was a tendency for plasma PAF acetylhydrolase activity to increase with the length of the history of hypertension. Further studies are needed to distinguish between a number of reasons for increased levels of plasma PAF acetylhydrolase in essential hypertension.  相似文献   

14.
Metagenomics is an emerging field for mining the bioresources for new biomolecules for potential application in biotechnology and biomedicine. In the present study, a novel acetylhydrolase (Est13) was detected during the function-based screening of a metagenomic library established from the DNA extracted from the cellulose-depleting microbial community set up with an earthworm cast. Analysis showed that Est13 exhibited some similarities with a human and parasite platelet-activating factor acetylhydrolase (PAF-AH) belonging to the SGNH hydrolase superfamily. Biochemical characterization of the purified recombinant enzyme using substrates common for hydrolases of this superfamily demonstrated that Est13 hydrolysed p-nitrophenyl acetate quite efficiently, with a k(cat) /K(M) value of 3209 mM(-1) s(-1). The Est13 showed highest activity at pH 8.0 and 40°C, conditions in which it is relatively stable compared with known PAF-AHs. In vitro functional analysis of the platelet-activating factor hydrolysis showed a dose- and time-dependent inhibition of platelet aggregation in the range of 2-4 μM, making this enzyme a potential candidate for biomedical applications.  相似文献   

15.
This clinical study reports that blood levels of the pro-inflammatory mediator platelet-activating factor (PAF) did not change in colorectal cancer patients. In contrast, plasma levels of two enzymatic activities, one implicated in PAF production (i.e. phospholipase A2) and one in PAF degradation (i.e. PAF acetylhydrolase activity) were significantly elevated.  相似文献   

16.
The purpose of this study was to investigate, with aging, the activity of two enzymes associated to HDL and responsible for its anti-atherogenic activity; paraoxonase (PON1) and platelet-activating factor acetylhydrolase (PAF-AH). Ninety-five subjects aged between 26 and 77 years were recruited for the study. The prevalence of phenotype A, AB, and B in our subjects group was 69.47,21.05 and 9.47% respectively. Plasma as well as HDL paraoxonase activity decreased significantly with aging (r =-0.218, P < 0.039) and (r = -0.280, P < 0.006) respectively. PAF-AH activity was unchanged with aging however, we noted a negative correlation between PAF-AH and PON1 activity in HDL (r = -0.243, P < 0.02) and in LDL vs HDL (r =-0.462, P < 0.001).  相似文献   

17.
Cryopreservation of boar sperm compromises fertility after thawing by reducing sperm longevity and inducing acrosome reaction-like changes. In an attempt to improve the post-thaw motility and acrosome integrity of boar sperm, semen was frozen using a modified Westendorf method in which the medium was supplemented with either platelet-activating factor (PAF) or a recombinant platelet-activating factor:acetylhydrolase (PAF:AH; Pafase) before or after freezing. Platelet-activating factor is a phospholipid that is present in boar semen and PAF:AH is the naturally occurring enzyme that converts PAF to biologically inactive Lyso-PAF. Addition of PAF to the cryopreservation medium improved post-thaw motility immediately after thawing and after 3h incubation at 37 degrees C (60.0+/-0.0% and 25.0+/-2.9%; mean+/-S.E.M.) compared to the control sperm (41.7+/-1.7% and 10.0+/-2.9%; P<0.05). Acrosome integrity was higher immediately after thawing and after 3 and 6h incubation at 37 degrees C when sperm were frozen in the presence of Pafase (55.7+/-3.2%, 45.7+/-3.7% and 23.0+/-3.1%), compared to the control sperm (42.7+/-1.5%, 25.7+/-5.7% and 12.3+/-2.7%) and sperm frozen in the presence of PAF (33.0+/-3.7%, 26.3+/-2.2% and 11.7+/-0.3%; P<0.05). Addition of PAF to sperm after thawing improved motility immediately post-thaw (41.6+/-2.6%), compared with addition of Pafase (23.3+/-2.2%) or the control sperm with no supplementation of the medium (26.7+/-2.2%; P<0.05). However, this beneficial effect was lost by 3h post-thaw. Supplementation of boar semen cryopreservation medium with PAF and Pafase appeared to have beneficial effects on the in vitro quality of the sperm post-thaw.  相似文献   

18.
Human plasma platelet activating factor acetylhydrolase (pPAF-AH) is a phospholipase A(2) that specifically hydrolyzes the sn-2 ester of platelet activating factor (PAF) and of phospholipids with oxidatively truncated sn-2 fatty acyl chains. pPAF-AH is bound to lipoproteins in vivo, and it binds essentially irreversibly to anionic and zwitterionic phospholipid vesicles in vitro and hydrolyzes PAF and PAF analogues. Substrate hydrolysis also occurs in the absence of vesicles, with a maximum rate reached at the critical micelle concentration. A novel pre-steady-state kinetic analysis with enzyme tightly bound to vesicles and with a substrate that undergoes slow intervesicle exchange establishes that pPAF-AH accesses its substrate from the aqueous phase and thus is not an interfacial enzyme. Such a mechanism readily explains why this enzyme displays dramatic specificity for phospholipids with short sn-2 chains or with medium-length, oxidatively truncated sn-2 chains since a common feature of these lipids is their relatively high water solubility. It also explains why the enzymatic rate drops as the length of the sn-1 chain is increased. pPAF-AH shows broad specificity toward phospholipids with different polar headgroups. Additional results are that PAF undergoes intervesicle exchange on the subminute time scale and it does not undergo transbilayer movement over tens of minutes.  相似文献   

19.
Platelet-activating factor (PAF) is an important mediator of cell loss following diverse pathophysiological challenges, but the manner in which PAF transduces death is not clear. Both PAF receptor-dependent and -independent pathways are implicated. In this study, we show that extracellular PAF can be internalized through PAF receptor-independent mechanisms and can initiate caspase-3-dependent apoptosis when cytosolic concentrations are elevated by approximately 15 pM/cell for 60 min. Reducing cytosolic PAF to less than 10 pM/cell terminates apoptotic signaling. By pharmacological inhibition of PAF acetylhydrolase I and II (PAF-AH) activity and down-regulation of PAF-AH I catalytic subunits by RNA interference, we show that the PAF receptor-independent death pathway is regulated by PAF-AH I and, to a lesser extent, by PAF-AH II. Moreover, the anti-apoptotic actions of PAF-AH I are subunit-specific. PAF-AH I alpha1 regulates intracellular PAF concentrations under normal physiological conditions, but expression is not sufficient to reduce an acute rise in intracellular PAF levels. PAF-AH I alpha2 expression is induced when cells are deprived of serum or exposed to apoptogenic PAF concentrations limiting the duration of pathological cytosolic PAF accumulation. To block PAF receptor-independent death pathway, we screened a panel of PAF antagonists (CV-3988, CV-6209, BN 52021, and FR 49175). BN 52021 and FR 49175 accelerated PAF hydrolysis and inhibited PAF-mediated caspase 3 activation. Both antagonists act indirectly to promote PAF-AH I alpha2 homodimer activity by reducing PAF-AH I alpha1 expression. These findings identify PAF-AH I alpha2 as a potent anti-apoptotic protein and describe a new means of pharmacologically targeting PAF-AH I to inhibit PAF-mediated cell death.  相似文献   

20.
Membrane phospholipids are susceptible to oxidation, which is involved in various pathological processes such as inflammation, atherogenesis, neurodegeneration, and aging. One enzyme that may help to remove oxidized phospholipids from cells is intracellular type II platelet-activating factor acetylhydrolase (PAF-AH (II)), which hydrolyzes oxidatively fragmented fatty acyl chains attached to phospholipids. Overexpression of PAF-AH (II) in cells or tissues was previously shown to suppress oxidative stress-induced cell death. In this study we investigated the functions of PAF-AH (II) by generating PAF-AH (II)-deficient (Pafah2(-/-)) mice. PAF-AH (II) was predominantly expressed in epithelial cells such as kidney proximal and distal tubules, intestinal column epithelium, and hepatocytes. Although PAF-AH activity was almost abolished in the liver and kidney of Pafah2(-/-) mice, Pafah2(-/-) mice developed normally and were phenotypically indistinguishable from wild-type mice. However, mouse embryonic fibroblasts derived from Pafah2(-/-) mice were more sensitive to tert-butylhydroperoxide treatment than those derived from wild-type mice. When carbon tetrachloride (CCl(4)) was injected into mice, Pafah2(-/-) mice showed a delay in hepatic injury recovery. Moreover, after CCl(4) administration, liver levels of the esterified form of 8-iso-PGF(2alpha), a known in vitro substrate of PAF-AH (II), were higher in Pafah2(-/-) mice than in wild-type mice. These results indicate that PAF-AH (II) is involved in the metabolism of esterified 8-isoprostaglandin F(2alpha) and protects tissue from oxidative stress-induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号