首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Bacillus polymyxa ferments glucose to 1-2,3 butanediol, acetoin, ethanol, acetic acid, lactic acid, and formic acid. This research investigates product formation as a function of oxygen availability. A predictive model that simulates product distribution at known oxygen transfer rates is developed on the hypothesis that, in an energy-limited environment, B. polymyxa utilizes glucose and oxygen in the most efficient manner. The efficiency of utilization of glucose and oxygen is measured in terms of the ATP yields of each oxidative pathway. The identity of the products constituting the profile at the given oxygen transfer rate is determined by comparing the ATP production and consumption rates. While the ATP generated is calculated from a knowledge of the oxygen transfer rate and ATP yields of the oxidative pathways, the ATP consumption is estimated by the Pirt expression in terms of growth- and nongrowth-associated components. The product formation rates are obtained by solving ATP and NAD balance equations. They equate the production and consumption rates of these intermediates and are derived from the pseudo-steady-state hypothesis. The model is applied to continuous culture systems that are both open and closed with respect to biomass. At a given oxygen transfer rate, dilution rate, and inlet glucose concentration, the model predicts steady-state concentrations of two dominant fermentation endproducts with the help of four parameters that can be determined from independent experiments. In contrast with earlier approaches, the experimental studies are carried out in continuous culture. Product profiles are obtained at various oxygen transfer rates, fer rates, inlet glucose concentrations, and dilution rates. The effect of pH on the relative distribution of products is also demonstrated. Results indicate that the model is fairly successful in predicting product profiles as a function of oxygen availability. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
Batch cultures of Lactobacillus rhamnosus were carried out at different pH values in order to study the limitation of growth and lactic acid production by the hydrogen ion, non-dissociated lactic acid and internal lactate concentrations. The effect of pH between 5 and 6.8 was studied at non-limiting concentrations of glucose; this is more significant for the lactic acid fermentation rate than for the maximum specific growth rate, as shown by the incomplete substrate consumption at lower values of medium pH and by the constant maximum cell mass obtained within the range of pH values studied. To check whether these results were a direct consequence of the different concentrations of the non-dissociated form of lactic acid at different external pH values, specific growth rates and lactic acid productions rates were calculated for each external pH value. The same specific growth rates were observed at the same non-dissociated lactic acid concentrations only at pH values of 5 and 5.5. For higher values of pH (pH > 6) the specific growth rate falls to zero as the non-dissociated lactic acid concentration decreases. This shows that generalisations made from studies performed within very narrow ranges of pH are not valid and that the non-dissociated form of lactic acid is not the only inhibiting species. The internal pH was measured experimentally for each external pH value in order to calculate the internal lactate ion concentration. This form is described to be the inhibitory one. The results obtained confirmed that the specific growth rate reached zero at approximately the same lactate concentration for all the pH values studied. Received: 31 January 1997 / Received revision: 15 May 1997 / Accepted: 19 May 1997  相似文献   

3.
A biosensor system for continuous flow determination of enzyme activity was developed and applied to the determination of glucose oxidase and lactic dehydrogenase activities. The glucose oxidase activity sensor was prepared from the combination of an oxygen electrode and a flow cell. Similarly, the lactic dehydrogenase activity sensor was prepared from the combination of a pyruvate oxidase membrane, an oxygen electrode, and a flow cell. Pyruvate oxidase was covalently immobilized on a membrane prepared from cellulose triacetate, 1,8-diamino-4-aminomethyloctane, and glutaraldehyde. Glucose oxidase activity was determined from the oxygen consumed upon oxidation of glucose catalyzed by glucose oxidase. Lactic dehydrogenase activity was determined from the pyruvic acid formed upon dehydrogenation of lactic acid catalyzed by lactic dehydrogenase. The amount of pyruvic acid was determined from the oxygen consumed upon oxidation of pyruvic acid by pyruvate oxidase. Calibration curves for activity of glucose oxidase and lactic dehydrogenase were linear up to 81 and 300 units, respectively. One assay could be completed within 15 min for both sensors and these were stable for more than 25 days at 5°C. The relative errors were ±4 and ±6% for glucose oxidase and lactic dehydrogenase sensors, respectively. These results suggest that the sensor system proposed is a simple, rapid, and economical method for the determination of enzyme activities.  相似文献   

4.
Lactic acid production by chick embryo fibroblasts occurs in the absence of exogenous glucose. Fifteen to 50-fold less lactic acid is formed in the absence of glucose than in its presence. Nevertheless, serum and pH stimulation enhances this residual lactic acid production to the same relative extent as when glucose is present. The amount of lactic acid formed cannot be accounted for by the catabolism of residual glucose in the medium since its concentration is less than one-tenth that of the lactic acid eventually produced. Moreover, the residual glucose concentration remains constant or increases during the course of the experiment. To a large extent lactic acid accumulation in the absence of external glucose is dependent on the presence of amino acids in the medium, but amino acid transport is not affected by the stimulatory agents used in this study. The results suggest that treatments which stimulate cell multiplication also activate those enzymatic pathways which convert amino acids to pyruvic and thence to lactic acid.  相似文献   

5.
1. Schistosoma mansoni utilizes in 1 hour an amount of glucose equivalent to one-sixth to one-fifth of its dry weight. Over 80 per cent of the metabolized glucose is converted to lactic acid by this organism. 2. The rates of glucose utilization and of lactic acid production by S. mansoni are the same under aerobic and under anaerobic conditions. 3. A high rate of lactic acid production and the absence of a postanaerobic increase in the oxygen uptake differentiate S. mansoni from most other parasitic helminths whose metabolism has been studied. 4. Arsenite and p-chloromercuric benzoate inhibit in low concentrations the oxygen uptake and the rate of glycolysis of S. mansoni. This inhibition is not prevented or reversed by an excess of glutathione or of thioglycollate. 5. Fluoride inhibits the removal of glucose and the production of lactic acid by S. mansoni to the same degree. 6. Low concentrations of quinacrine (atabrine) do not affect the respiration or the carbohydrate metabolism of the schistosomes. 7. The inhibitory effect of aldehydes on the metabolism of S. mansoni has been measured. Among this group of compounds dl-glyceraldehyde and o-nitrobenzaldehyde are the most effective inhibitors of glycolysis. 8. In a concentration of 2.6 x 10(-6)M (1:1,000,000) a cyanine dye inhibits almost completely the respiration of the schistosomes, but has no effect on their rate of glycolysis. The oxygen uptake of the worms is inhibited by fuadin to a greater degree than their rate of glycolysis. 2-methyl-1,4-napthoquinone is a much more effective inhibitor of glycolysis than of the respiration of S. mansoni. The latter compound interacts with plasma albumin and, therefore, its inhibitory action on the metabolism of the schistosomes is greatly reduced in human serum or plasma. 9. Evidence is discussed which indicates that, in contrast to glycolysis, respiratory metabolism is not essential for the survival of S. mansoni.  相似文献   

6.
The present numerical study aims to investigate the disc nutrition and factors affecting it by evaluating the concentrations of oxygen, glucose and lactic acid in the disc while accounting for the coupling between these species via the pH level in the tissue and the nonlinear concentration-consumption (for glucose and oxygen) and concentration-production (for lactate) relations. The effects of changes in the endplate exchange area (EA) adjacent to the nucleus or the inner annulus for the transport of nutrients and in the disc geometry as well as tissue diffusivities under static compression loading on species concentrations are also studied. Moreover, alterations in solute diffusion following a central endplate fracture are investigated. An axisymmetric geometry with four distinct regions is considered. Supply sources are assumed at the outer annulus periphery and disc endplates. Coupling between different solutes, pH level, endplate disruptions (calcifications and fractures) and mechanical loads substantially influenced the distribution of nutrients throughout the disc as well as the magnitude and location of critical concentrations; maximum for the lactic acid and minimum for oxygen and glucose. In cases with loss of endplate permeability and/or disruptions therein, as well as changes in geometry and fall in diffusivity associated with fluid expression, the nutrient concentrations could fall to levels inadequate to maintain cellular activity or viability, thus initiating or accelerating disc degeneration.  相似文献   

7.
This paper describes taxonomic position, phylogeny, and phenotypic properties of 14 lactic acid bacteria (LAB) originating from an Apis mellifera guts. Based on the 16S rDNA and recA gene sequence analyses, 12 lactic acid bacteria were assigned to Lactobacillus kunkeei and two others were classified as Fructobacillus fructosus. Biochemically, all isolated lactic acid bacteria showed typical fructophilic features and under anaerobic conditions grew well on fructose, but poorly on glucose. Fast growth of bacteria on glucose was noted in the presence of oxygen or fructose as external electron acceptors. The residents of honeybee guts were classified as heterofermentative lactic acid bacteria. From glucose, they produced almost equimolar amounts of lactic acid, acetic acid, and trace amounts of ethanol. Furthermore, they inhibited the growth of the major honeybee pathogen, Paenibacillus larvae, meaning that the LAB studied may have the health-conferring properties of probiotics.  相似文献   

8.
The glucose utilization lactic and pyruvic acid production and oxygen uptake of normal and Eperythrozoon ovis infected sheep erythrocytes were measured under aerobic conditions. Infected cells showed marded increases in both glucose utilization and acid production as compared with controls. Uninfected erythocyte samples which included a percentage of reticulocytes comparable to that found in E. ovis infection showed no apparent difference in glucose utilization and lactic acid production form the normal control erythrocytes, although considerable increases in the oxygen uptake were recorded.  相似文献   

9.
Exudate leucocytes lost approximately 30% of their original intracellular ascorbic acid content during two hour incubation in glucose medium. The same loss was observed for cells containing initially both high and low levels of ascorbic acid. High concentrations of ascorbic acid in the incubation medium depressed lactic acid production and increased oxygen uptake by the cells. Iodoacetate and fluoride at low concentrations decreased ascorbic acid loss from cells during incubation; at high concentrations they increased loss. Ascorbic acid uptake from the medium was inhibited by iodoacetate but stimulated by fluoride.  相似文献   

10.
Since tissue-engineered cartilage is avascular, both nutrient supply and metabolic waste removal rely on diffusion. As a result, gradients of nutrients and wastes exist through the construct. Previous models usually calculate gradients of oxygen, glucose, and lactic acid separately, without taking into account the complex interdependence between concentrations of these substrates and rates of metabolism. In this study, these interactions were experimentally examined and incorporated into diffusion models. One-dimensional diffusion-reaction models were developed for three typical culture conditions, that is, static culture, perfusion culture, and suspended culture. The profiles of oxygen, glucose, lactic acid, and pH in the cultured constructs were calculated simultaneously using measured metabolic rates. The maximum construct size and cell density which could be supported before nutrients were depleted in the construct center was identified; a function predicting the relationship between construct dimension and the maximum viable cell density was developed. For constructs incubated under static culture the model demonstrated that the gradients which developed through the medium could not be neglected. Perfusion cultures could support a considerably higher cell density than static cultures, while for batch cultures in a rotating bioreactor, the volume of medium also influences the maximum cell density that could be supported. This study provides useful guidance for design of engineered cartilage constructs.  相似文献   

11.
Methane production from glucose in vitro by mixed rumen bacteria   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Methane was produced in vitro by incubating cell suspensions of rumen bacteria with glucose, under nitrogen. The amount of methane produced varied considerably and was lowered by high glucose concentrations. Carbon dioxide, acetic acid, propionic acid, butyric acid and lactic acid were also produced. An oxidation–reduction balance of near unity could be calculated, although carbon recovery was low. Under the experimental conditions, rumen bacteria used most of the metabolic hydrogen produced during the oxidation of glucose to form lactic acid. 2. Lower methane production at high glucose concentrations was balanced by higher lactic acid production. Low pH values due to a high production rate of lactic acid might explain the inhibition of methane production. 3. No lactic acid, less methane, but considerably more propionic acid were formed when nitrogen was replaced by carbon dioxide in the incubation system.  相似文献   

12.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.  相似文献   

13.
An unstructured mathematical model for lactic acid fermentation was developed. This model was able to predict the inhibition effects of lactic acid and glucose and was confirmed to be valid with various initial concentrations of lactic acid and glucose. Simulation of energy production was made using this mathematical model, and the relationship between the kinetics of energy metabolism and lactic acid production was also analyzed.  相似文献   

14.
The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents.  相似文献   

15.
Yu L  Pei X  Lei T  Wang Y  Feng Y 《Journal of biotechnology》2008,134(1-2):154-159
Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we applied the genome shuffling to improve the glucose tolerance of Lactobacillus rhamnosus ATCC 11443 while simultaneously enhancing the L-lactic acid production. The starting population was generated by ultraviolet irradiation and nitrosoguanidine mutagenesis and then subjected for the recursive protoplast fusion. The positive colonies from library created by fusing the inactivated protoplasts were more likely to be screened on plates containing different concentrations of high glucose and 2% CaCO(3). Characterization of all mutants and wild-type strain in the shake flask indicated the compatibility of two optimal phenotypes of glucose tolerance and lactic acid enhancement. The lactic acid production, cell growth and glucose consumption of the best performing strain from the second round genome shuffled populations were 71.4%, 44.9% and 62.2% higher than those of the wild type at the initial glucose concentration of 150 g/l in the 16l bioreactor. Furthermore, the higher lactic acid concentrations were obtained when the initial glucose concentrations increased to 160 and 200 g/l in batch fermentation.  相似文献   

16.
These experiments were performed to determine the factor(s) that regulate lactic acid production and utilization by rat tumors in vivo. Arteriovenous differences for glucose and lactic, pyruvic, 3-OH-butyric, and acetoacetic acids were measured across "tissue-isolated" Walker 256 sarcocarcinomas and Morris 5123C hepatomas in fasted rats anesthetized with sodium pentobarbital. Twenty-six per cent of the sarcocarcinomas (n = 53) and 48% of the hepatomas (n = 29) utilized blood lactic acid. The remainder released lactic acid into the venous blood. The steady-state rate of glucose consumption was similar in both lactate-producing and lactate-utilizing tumors. The range of lactate concentrations in the blood leaving the tumors was narrower than the range of lactate concentrations in the blood entering the tumors. This difference was caused by tumor lactic acid production at low arterial lactate concentrations and tumor lactic acid utilization at high arterial lactate concentrations. Individual tumors changed from lactic acid production to lactic acid utilization in a matter of minutes in response to an increase in the arterial lactic acid concentration. Mean lactic plus pyruvic acid concentrations and lactic/pyruvic acid ratios in the tumor venous blood were 2.15 +/- 0.22 and 23.4 +/- 3.7 mM, respectively, for Walker sarcocarcinoma 256 (n = 18) and 1.28 +/- 0.13 and 48.1 +/- 5.1 mM, respectively, for hepatoma 5123C (n = 11). The results suggest: that a steady-state lactic plus pyruvic acid concentration and lactic/pyruvic acid ratio are maintained in the tumor cell cytoplasm by the active glycolytic pathway and by lactic acid dehydrogenase; that the tumor intracellular concentrations equilibrate with the arterial blood and that the tumor steady state is expressed in the tumor venous blood; and that tumor lactic acid production or utilization results from the equilibration between the variable arterial lactic acid concentration and the more constant tumor intracellular steady-state lactic acid concentration. Since the arterial lactate concentration may be less than, greater than, or equal to the intracellular steady-state concentration, an individual tumor may produce, utilize or neither produce nor utilize lactic acid.  相似文献   

17.
The potential of an aqueous two-phase system composed of a polycation, poly(ethyleneimine) (PEI), and an uncharged polymer, (hydroxyethyl) cellulose (HEC), for extractive lactic acid fermentation was tested. Batch fermentation with 20 g/L glucose in two-phase medium using Lactococcus lactis without external pH control resulted in 3-4 times higher amount of lactate and biomass produced as compared to that in a conventional one-phase medium. Lactic acid was preferentially partitioned to the PEI-rich bottom phase. However, the cells which favored the HEC-rich top phase in a fresh two-phase medium were partitioned to a significant extent to the bottom phase after fermentation. Addition of phosphate buffer or pH adjustment to 6.5 after fermentation caused fewer cells to move to the bottom phase. With external pH control, fermentation in normal and two-phase medium showed no marked differences in glucose consumption and lactic acid yield, except that about 1.3 times higher cell density was obtained in the two-phase broth, especially at initial glucose concentrations of 50-100 g/L. Use of higher concentration of phosphate during batch fermentation in the two-phase medium with 50 g/L sugar provided a 15% higher yield of lactic acid, but the growth rate of cells was nearly half of the normal, thus affecting the productivity. Continuous fermentation with twice the normal phosphate concentration resulted in higher cell density, product yield, and productivity in two-phase medium than in monophasic medium. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Summary Chemical mutagenesis with ethyl methanesulfonate (EMS) was used to develop strains ofLactobacillus delbrueckii (ATCC 9649) that tolerated increased lactic acid concentrations while continuously producing the acid. Three mutants (DP2, DP3 and DP4) were compared with wild-typeL. delbrueckii by standing fermentations with different glucose concentrations. All three mutants produced higher levels of lactic acid than the wild-type. In pH-controlled (pH 6.0) stirred-tank-batch fermentations, mutant DP3 in 12% glucose, 1% yeast extract/mineral salt/oleic acid medium produced lactic acid at a rate that was more than 2-times faster than the wild-type. Mutant DP3 also produced 77 g/l lactic acid compared with 58 g/l for the wild-type. Overall, compated with wild-type, the mutants DP2 and DP3 exhibited faster specific growth rates, shorter lag phases, greater lactic acid yields, tolerated higher lactic acid concentrations, and produced as much as 12% lactic acid in 12% glucose, 3% yeast extract/mineral salt/oleic acid medium which required an additional 9% glucose when the residual glucose concentration decreased to 3%. Mutant DP3 was stable for over 1.5 years (stored freeze dried). The strain development procedure was very successful; mutants with enhanced lactic acid-producing capacity were obtained each time the procedure was employed.Journal Paper No. J-14087 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA. Projects No. 2889 and 0178.  相似文献   

19.
Fed and 3-day fasted inland (average mass: 6.97 g) and anadromous (average mass: 6.54 g) striped bass Morone saxatilis fingerlings were held in dipnets above water for 5 min in groups of six. Severity of the response to this handling was measured by whole-body glucose, glycogen, and lactic acid in non-handled bass (considered control level), and then at 30 min, 1, 6, 12, 24 and 48 h recovery. At resting levels, both fed and fasted inland bass showed significantly higher concentrations of the whole body variables than anadromous bass. All four groups of bass showed an increase in lactic acid and glucose immediately after handling, with a concomitant decrease in glycogen. Peak levels of glucose and lactic acid were similar in the four groups. Fasting did not have an effect on the glucose and lactic acid responses, but did affect the glycogen response. The two fasted groups did not return to control glycogen concentrations during the 48-h recovery period. By 48 h, both glucose and lactic acid had returned to control levels. It is concluded that inland and anadromous strains of fingerling striped bass do not differ in their sensitivity to an acute handling stress. Recovery of glycogen energy stores following handling is much better if fish are not fasted before handling.  相似文献   

20.
Summary A kinetic study regarding product inhibition in lactic acid fermentation by Streptococcus faecalis, which produces l-lactic acid, was performed in a chemostat at various feed concentrations of glucose (10, 20, and 30 g/l) at pH 7.0. Steady-state kinetic constants for the specific consumption rate of glucose and the specific production rate of lactic acid were determined at a residual glucose concentration below 2 g/l, which was accomplished in a chemostat. All the parameters, the specific growth rate, the specific consumption rate of glucose, and the specific production rate of lactic acid, were definitely related to non-competitive inhibition with regard to the concentration of the product, lactic acid.Offprint requests to: K. Hiyama  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号