首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

2.
A soluble form of the neural cell adhesion molecule (N-CAM) was obtained from 100,000-g supernatants of crude brain membrane fractions by incubation for 2 h at 37 degrees C. The isolated N-CAM, consisting of one polypeptide chain with a molecular mass of 110 kilodaltons (N-CAM 110), was studied for its binding specificity to different components of the extracellular matrix (ECM). N-CAM 110 bound to different types of collagen (collagen types I-VI and IX). The binding efficiency was dependent on salt concentration and could be called specific according to the following criteria: (a) Binding showed substrate specificity (binding to collagens, but not to other ECM components, such as laminin or fibronectin). (b) Binding of N-CAM 110 to heat-denatured collagens was absent or substantially reduced. (c) Binding was saturable (Scatchard plot analyses were linear with KD values in the range of 9.3-2.0 X 10(-9) M, depending on the collagen type and buffer conditions). Binding of N-CAM 110 to collagens could be prevented in a concentration-dependent manner by the glycosaminoglycans heparin and chondroitin sulfate. N-CAM 110 also interacted with immobilized heparin, and this interaction could be prevented by heparin and chondroitin sulfate. Thus, in addition to its role in cell-cell adhesion, N-CAM is a binding partner for different ECM components, an observation suggesting that it also serves as a substrate adhesion molecule in vivo.  相似文献   

3.
The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140x10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.  相似文献   

4.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

5.
On neural cells, the cell adhesion molecule L1 is generally found coexpressed with N-CAM. The two molecules have been suggested, but not directly shown, to affect each other's function. To investigate the possible functional relationship between the two molecules, we have characterized the adhesive interactions between the purified molecules and between cultured cells expressing them. Latex beads were coated with purified L1 and found to aggregate slowly. N-CAM-coated beads did not aggregate, but did so after addition of heparin. Beads coated with both L1 and N-CAM aggregated better than L1-coated beads. Strongest aggregation was achieved when L1-coated beads were incubated together with beads carrying both L1 and N-CAM. In a binding assay, the complex of L1 and N-CAM bound strongly to immobilized L1, but not to the cell adhesion molecules J1 or myelin-associated glycoprotein. N-CAM alone did not bind to these glycoproteins. Cerebellar neurones adhered to and sent out processes on L1 immobilized on nitrocellulose. N-CAM was less effective as substrate. Neurones interacted most efficiently with the immobilized complex of L1 and N-CAM. They adhered to this complex even when its concentration was at least 10 times lower than the lowest concentration of L1 found to promote adhesion. The complex became adhesive for cells only when the two glycoproteins were preincubated together for approximately 30 min before their immobilization on nitrocellulose. The adhesive properties between cells that express L1 only or both L1 and N-CAM were also studied. ESb-MP cells, which are L1-positive, but N-CAM negative, aggregated slowly under low Ca2+. Their aggregation could be completely inhibited by antibodies to L1 and enhanced by addition of soluble N-CAM to the cells before aggregation. N2A cells, which are L1 and N-CAM positive aggregated well under low Ca2+. Their aggregation was partially inhibited by either L1 or N-CAM antibodies and almost completely by the combination of both antibodies. N2A and ESb-MP cells coaggregated rapidly and their interaction was similarly inhibited by L1 and N-CAM antibodies. These results indicate that L1 is involved in two types of binding mechanisms. In one type, L1 serves as its own receptor with slow binding kinetics. In the other, L1 is modulated in the presence of N-CAM on one cell (cis-binding) to form a more potent receptor complex for L1 on another cell (trans-binding).  相似文献   

6.
Cell-substratum adhesion in the embryonic chicken nervous system has been shown to be mediated in part by a 170,000-mol-wt polypeptide that is a component of adherons. Attachment of retinal cells to the 170,000-mol-wt protein is inhibited by the C1H3 monoclonal antibody and by heparan sulfate (Cole, G. J., D. Schubert, and L. Glaser, 1985, J. Cell Biol., 100:1192-1199). In the present study we have demonstrated that the 170,000-mol-wt C1H3 polypeptide is immunologically identical to the neural cell adhesion molecule N-CAM, and that the 170,000-mol-wt component of N-CAM is preferentially secreted by cells as a component of adherons. We have identified a monoclonal antibody, designated B1A3, that inhibits heparin binding to N-CAM and cell-to-substratum adhesion. A 25,000-mol-wt heparin (heparan sulfate)-binding domain of N-CAM has been identified by limited proteolysis, and this fragment promotes cell attachment when bound to glass surfaces. The fragment also partially inhibits cell binding to adherons when bound to retinal cells, and the B1A3 monoclonal antibody inhibits retinal cell attachment to substrata composed of intact N-CAM or the heparin-binding domain. These data are the first evidence that N-CAM is a multifunctional protein that contains both cell-and heparin (heparan sulfate)-binding domains.  相似文献   

7.
Abstract: Triggering of the cell adhesion molecules L1 or N-CAM in a nerve growth cone membrane fraction from fetal rat brain with purified L1 or N-CAM or specific antibodies decreases the steady-state levels of protein tyrosine phosphorylation in the membranes. Here we report that triggering of L1 and N-CAM in the growth cone-enriched membrane fraction with a subset of antibodies directed against the extracellular region of L1 and N-CAM elicited dephosphorylation of endogenous protein substrates, indicating the presence of a cell adhesion molecule-activated phosphatase. The most prominent substrates were a membrane-associated 200-kDa protein and tubulin, both of which were dephosphorylated on tyrosine and serine/threonine residues in response to L1 or N-CAM triggering. The antibody-induced phosphatase was inhibited by agents that blocked tyrosine and serine/threonine phosphatases, including sodium orthovanadate, vanadyl sulfate, zinc cations, heparin, and sodium pyrophosphate. Purified L1 and N-CAM fragments and other antibodies reacting with the extracellular region of these adhesion molecules did not activate the phosphatase but did inhibit tyrosine phosphorylation. These properties suggested that triggering of L1 and N-CAM can lead to either phosphatase activation or tyrosine kinase inhibition in growth cone membranes. These findings implicate protein phosphatases in addition to tyrosine kinases as components of L1 and N-CAM intracellular signaling pathways in growth cones.  相似文献   

8.
The expression of the N-CAM/D2-CAM cell adhesion molecule was studied in skeletal muscle. In cell cultures derived from adult human muscle N-CAM/D2-CAM was found at the cell surface of myoblasts and myotubes but not fibroblasts, showing that N-CAM/D2-CAM is a specific gene product of muscle. Western blots showed that the anti N-CAM/D2-CAM antibody reacted with a single protein band of 180 000 daltons in these cultures that differed in mobility from the broad band of 150 000-200 000 daltons found in brain. N-CAM/D2-CAM is also expressed by muscle at certain stages of development. Human foetal muscle of 10 and 20 weeks gestation showed N-CAM/D2-CAM around developing myofibres while both fast and slow adult muscle fibres did not express N-CAM/D2-CAM, suggesting that the protein is down regulated during myofibre maturation. This was studied further in developing rat muscle where N-CAM/D2-CAM was found on myofibres in the day 1 neonate, but had disappeared by day 9. N-CAM/D2-CAM is, however, re-expressed in human muscle disease where there is muscle regeneration such as in polymyositis, and here is associated with classic regenerating myofibres. N-CAM/D2-CAM expression is temporally regulated and is expressed only at times of synapse formation consistent with the idea that it may be involved in early nerve-muscle interactions.  相似文献   

9.
I have examined the distribution of neural cell adhesion molecule (N-CAM) in cultured C2 myogenic cells and other cell lines to determine if N-CAM accumulates at sites of cell-cell contact. C2 cells growing in log phase display large clusters of neural cell adhesion molecule where they contact each other. These clusters are remarkably stable, do not form at cell-substrate contacts, and appear not to be enriched in a number of other cytoskeletal, membrane, or extracellular proteins. Thus, N-CAM clusters form preferentially in response to cell-cell contact and are specifically enriched in N-CAM. As C2 cultures mature and differentiate, clusters persist at contacts between aligning myoblasts and between myotubes, consistent with a role in myogenesis. N-CAM is also enriched at cell-cell contacts in cultures of PC12, NRK, and CHO cells. These cells have significant amounts of N-CAM as detected on immunoblots. Clusters are not seen in L929 cells, which do not have detectable amounts of N-CAM. Coculture of these cells with C2 cells results in the clustering of N-CAM at heterologous contacts between C2 cells and NRK, CHO, or PC12 cells, but not between C2 cells and L929 cells. These results suggest that N-CAM specifically accumulates where N-CAM-bearing cells contact one another. Clustering of N-CAM may be an important step in strengthening intercellular adhesion.  相似文献   

10.
The ionotropic 5HT(3) receptor was expressed in transiently transfected mammalian cells, yielding an unprecedented high concentration of up to 12 million receptors per cell. Receptor traffic in the plasma membrane of live cells was observed continuously over 24 h by fluorescence scanning confocal microscopy. This was possible by using 5HT(3) receptor-specific fluorescent ligands with high binding affinity and low off-rate to pulse label receptors at any time after appearance on the cell surface, and label subsequently those receptors expressed later by another, spectrally distinguishable, high-affinity fluorescent ligand. Having reached a critical cell surface concentration of approximately 3000 receptors/microm(2), the receptors started to aggregate in patches with a 4-fold increased surface concentration. The clusters were constantly delivered from a pool of freshly expressed receptors isotropically distributed within the basolateral region of the cell membrane. From there, they migrated to and accumulated on the apical cell surface approximately 9 h after transfection. Individual clusters grew until they reached a critical size of 1-2 microm when they merged to form with 3-5 microm large macroclusters. Clustered receptors were immobile on the minute time scale but always coexisted with monomeric receptors in the regions surrounding the clusters as revealed by fluorescence correlation spectroscopy. Because the receptor density of 12 000 receptors/microm(2) in the patches is as high as that found in two-dimensional crystals of certain membrane proteins, such patches might be a proper source for direct crystallization of membrane proteins without prior purification.  相似文献   

11.
Accumulation sites of lead phosphate reaction product consequent to Na(+)/K(+)-ATPase activity in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii were located ultracytochemically by para-nitrophenyl-phosphate hydrolysis and lead precipitation, and quantified per unit membrane area and cytoplasmic volume. In shrimps in freshwater (<0.5 per thousand S, 20 mOsm/kg H(2)O, 0.7 mEq Na(+)/liter), numerous sites of electron-dense, Na(+)/K(+)-ATPase reaction product accumulation were demonstrated in the membrane invaginations of the mitochondria-rich, intralamellar septal cells (12.5 +/- 1.7 sites/microm(2) membrane, 179 +/- 22 sites/microm(3) cytoplasm, mean+/- SEM, N 相似文献   

12.
Simple procedures using FM4-64 to follow membrane internalization and transport to the vacuolar system and endomembranes in Aspergillus nidulans are described. FM4-64 internalization is energy, temperature and F-actin dependent, strongly suggesting that it occurs by endocytosis. The dye sequentially labels: (i) cortical punctuate organelles whose motility resembles that of yeast actin patches; (ii) approximately 0.7 microm circular, hollow structures representing mature endosome/vacuole; and (iii) intermediate and large (2-3 microm in diameter) size vacuoles whose lumen is strongly labeled with 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). These large vacuoles possibly correspond to the final stage of one branch of the endocytic pathway. In addition, FM4-64 labels strongly the mitochondrial network and weakly the nuclear membrane. A class of cytoplasmic punctuate organelles which become fluorescent very shortly after dye loading and that can move in either apical or basal direction at an average rate of 2-3 microm s(-1) is also described. This work provides a useful framework for the phenotypic characterization of A. nidulans mutants affected in endocytosis.  相似文献   

13.
Molecular dynamics of membrane proteins in frog nerve was studied by the spin labelling technique. By varying the reaction conditions three protein domains were identified which differ in polarity of the micro-environment of the labelled sites (polarity index, h = 0, 0.6 and 1.2) and in mobility (apparent rotational correlation times, tau 2 = 1 ns, 35 ns and 62 ns, respectively). The protein domains reflect different structural stabilities towards specific and non-specific membrane perturbants. One part of the labels has an anisotropic distribution. Modification of the membrane components with different chemicals leads to a change in conformation and/or segmental motion of proteins, as well as to an alteration in the degree of ordering of the attached labels. The experiments support the fact, that the state of the lipid matrix strongly influences the overall conformation of the embedded proteins and their functions in biological processes.  相似文献   

14.
Condensation precedes chondrogenic differentiation during development of primary cartilage. While neural cell adhesion molecule (N-CAM) enhances condensation, it is unclear whether N-CAM is also required for initiation of chondrogenic differentiation. In this study, the role of N-CAM in secondary chondrogenesis from periosteal cells of the quadratojugal (QJ) from embryonic chicks was studied using several in vitro approaches. The QJ is a membrane bone and so is not preceded by cartilage formation during development. However, QJ periosteal cells can differentiate into chondrocytes to form secondary cartilage in vivo. When QJ periosteal cells were enzymatically released and plated in low density monolayer, clonal or agarose cultures, chondrogenesis was initiated in the absence of N-CAM expression. Furthermore, overexpression of the N-CAM gene in periosteal cells in monolayer culture significantly reduced the number of chondrocyte colonies, suggesting that N-CAM inhibits secondary chondrogenesis. In contrast, and consistent with expression in vivo, N-CAM is expressed during osteogenesis from QJ periosteal cells and mandibular mesenchyme in vitro. These results are discussed in relation to the role of N-CAM in osteogenesis and in primary and secondary condensation.  相似文献   

15.
The spatiotemporal distribution of neural cell adhesion molecule (N-CAM) in the retinotectal system of adult goldfish was assessed by immunofluorescence using the monoclonal antibody (Mab) D3 against chick N-CAM. In immunoblots with extracts of cell surface membranes of fish brains, Mab D3 recognized a prominent band at 170K and a weak band at 130K (K = 10(3) Mr). N-CAM immunofluorescence on cells was restricted to the marginal growth zones of the retina and the tectum and, in normal fish, to the youngest axons from the new ganglion cells of the peripheral retinal margin. In fish with previously transected optic nerves (ONS), Mab D3 staining was found transiently on all axons from the site of the cut into the retinorecipient layers of the tectum, but disappeared from these axons 450 days after ONS. Growing retinal axons in vitro exhibited N-CAM immunofluorescence throughout their entire extent, including their growth cones. Glial cells cultured from regenerating optic nerves were, however, unlabeled. These data are consistent with the idea that N-CAM is involved in adhesive interactions of growing axons. The temporally regulated expression of N-CAM on the new retinal axons may contribute to the creation of the age-related organization of the axons in the retinotectal pathway of fish.  相似文献   

16.
Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.  相似文献   

17.
Selectively labelled lipids have been incorporated into the surface monolayer of human serum low density lipoprotein (LDL) and very low density lipoprotein (VLDL). From 3 to 17 mol% of phosphatidylcholine, selectively deuterated at various positions along the sn-2-acyl chain, was transferred from unilamellar vesicles to VLDL using a partially purified phosphatidylcholine transfer protein. Selectively deuterated palmitic acids were incorporated into LDL (6-20 mol%) and into VLDL (7-10 mol%). Electron microscopy, light scattering, and 31P nuclear magnetic resonance indicated that particle size remained unchanged. Gel exclusion chromatography and chemical analysis showed no difference in hydrodynamic properties and only slight alteration to particle component ratios. Biological activity of labelled VLDL was measured from the rate of cholesterol esterification by cultured J774A.1 cells. Effect of labelling LDL was evaluated by monitoring LDL uptake and degradation by cultured human skin fibroblasts. In all cases the lipoproteins containing labels were indistinguishable from their native counterparts.  相似文献   

18.
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N- CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti- Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究   总被引:23,自引:4,他引:19  
对岷江上游干旱河谷海拔梯度上(1 650~1 950 m)白刺花(Sophora davidii)叶片进行生态解剖学研究.观测指标包括叶片形态特征(叶长宽比、叶面积、叶片厚度)、解剖结构(表皮厚度、栅栏组织厚度(P)、海绵组织厚度(S)、P/S比值、表皮角质膜厚度)及叶表皮特征(气孔器密度和面积、表皮细胞密度和面积、表皮毛密度和长度).结果表明,白刺花叶片面积为0.144~0.208 cm2,叶总厚度为171.58~195.83 μm;叶肉组织分化明显,栅栏组织厚度与海绵组织厚度分别为69.83~82.42和62.00~ 80.67 μm,P/S的比值为1.14~1.01,上下表皮厚度分别为14.03~15.33和13.88~16.17 μm,上下角质膜厚度分别为2.66~4.56和2.76~2.02 μm;气孔密度为13.71~15.02个·mm-2,其面积为249.86~280.43 μm2;表皮细胞密度为160.54~178.43个·mm-2,其面积为557.43~626.85 μm2;表皮毛长度为186.51~260.99 μm,其密度为18.29~32.27个·mm-2.随海拔升高叶面积、叶厚度、栅栏组织和海绵组织的厚度、气孔器面积、表皮细胞面积以及表皮毛密度呈增加趋势,而角质膜厚度、表皮细胞密度和表皮毛长度则呈减小趋势;叶长宽比、P/S的比值、表皮厚度与气孔器密度无明显差异.  相似文献   

20.
Abstract: Golgi-enriched fractions have been isolated from rat brain of increasing postnatal age and defined by electron microscopy and distribution of marker enzymes. The expression of sialyltransferase activity associated with these fractions has been demonstrated to developmentally decrease and this appeared to be, in part, dependent on endogenous competitive inhibition. The developmental regulation of this activity paralleled the sialylation state of the neural cell adhesion molecule (D2-CAM/N-CAM) and could be demonstrated to be capable of endogenously sialylating this protein in the isolated Golgi fractions. In 12-day-old animals the majority of the transferred [14C]sialic acid was found to be associated with the high-molecular-weight [>200 kilodaltons (kd)] form of D2-CAM/N-CAM, indicative of the protein having been heavily sialylated. Sialylation of the individual D2-CAM/N-CAM polypeptides was also demonstrated in both 12-day and adult animals and transfer was evident only in the 180-kd and 115-kd components and not in the 140-kd component. In contrast, Golgi-enriched fractions prepared from adult animals showed little capability of heavily sialylating D2-CAM/N-CAM to any significant extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号