首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

2.
The role of the thyroid hormone agonist 3,3',5 L-tri-iodothyronine (T3) on cholangiocytes is unknown. We evaluated the in vivo and in vitro effects of T3 on cholangiocyte proliferation of bile duct-ligated (BDL) rats. We assessed the expression of 1-, 2-, 1-, and 2-thyroid hormone receptors (THRs) by immunohistochemistry in liver sections from normal and BDL rats. BDL rats were treated with T3 (38.4 µg/day) or vehicle for 1 wk. We evaluated 1) biliary mass and apoptosis in liver sections and 2) proliferation in cholangiocytes. Serum-free T3 levels were measured by chemiluminescence. Purified BDL cholangiocytes were treated with 0.2% BSA or T3 (1 µM) in the absence/presence of U-73122 (PLC inhibitor) or BAPTA/AM (intracellular Ca2+ chelator) before measurement of PCNA protein expression by immunoblots. The in vitro effects of T3 (1 µM) on 1) cAMP, IP3, and Ca2+ levels and 2) the phosphorylation of Src Tyr139 and Tyr530 (that, together, regulate Src activity) and ERK1/2 of BDL cholangiocytes were also evaluated. 1-, 2-, 1-, and 2-THRs were expressed by bile ducts of normal and BDL rats. In vivo, T3 decreased cholangiocyte proliferation of BDL rats. In vitro, T3 inhibition of PCNA protein expression was blocked by U-73122 and BAPTA/AM. Furthermore, T3 1) increased IP3 and Ca2+ levels and 2) decreased Src and ERK1/2 phosphorylation of BDL cholangiocytes. T3 inhibits cholangiocyte proliferation of BDL rats by PLC/IP3/Ca2+-dependent decreased phosphorylation of Src/ERK1/2. Activation of the intracellular signals triggered by T3 may modulate the excess of cholangiocyte proliferation in liver diseases. cholestasis; cholangiopathies; hyperplasia; intrahepatic biliary epithelium; mitosis  相似文献   

3.
From video imaging of fura 2-loaded baby hamster kidney (BHK)cells stably expressing the cloned human glucagon receptor, we foundthe Ca2+ response to glucagon tobe specific, dose dependent, synchronous, sensitive to pertussis toxin,and independent of Ca2+ influx.Forskolin did not elicit a Ca2+response, but treatment with a protein kinase A inhibitor, the Rp diastereomer of 8-bromoadenosine-3',5'-cyclicmonophosphothioate, resulted in a reduced glucagon-mediatedCa2+ response as well asCa2+ oscillations. The specificphospholipase C inhibitor U-73122 abolished theCa2+ response to glucagon, and amodest twofold increase in inositol trisphosphate(IP3) production could beobserved after stimulation with glucagon. In BHK cells coexpressingglucagon and muscarinic (M1)acetylcholine receptors, carbachol blocked the rise in intracellular free Ca2+ concentrations inresponse to glucagon, whereas glucagon did not affect thecarbachol-induced increase inCa2+. Furthermore, carbachol, butnot glucagon, could block thapsigargin-activated increases inintracellular free Ca2+concentration. These results indicate that, in BHK cells, glucagon receptors can activate not only adenylate cyclase but also a second independent G protein-coupled pathway that leads to the stimulation ofphospholipase C and the release ofCa2+ fromIP3-sensitive intracellularCa2+ stores. Finally, we provideevidence to suggest that cAMP potentiates theIP3-mediated effects onintracellular Ca2+ handling.

  相似文献   

4.
In the present study, we examined the mechanisms through which erythropoietin (Epo) activates the calcium-permeable transient receptor potential protein channel (TRPC)2. Erythroblasts were isolated from the spleens of phenylhydrazine-treated mice, and Epo stimulation resulted in a significant and dose-dependent increase in intracellular calcium concentration ([Ca2+]i). This increase in [Ca2+]i was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U-73122 but not by the inactive analog U-73343, demonstrating the requirement for PLC activity in Epo-modulated Ca2+ influx in primary erythroid cells. To determine whether PLC is involved in the activation of TRPC2 by Epo, cell models were used to examine this interaction. Single CHO-S cells that expressed transfected Epo receptor (Epo-R) and TRPC2 were identified, and [Ca2+]i was quantitated. Epo-induced Ca2+ influx through TRPC2 was inhibited by pretreatment with U-73122 or by downregulation of PLC1 by RNA interference. PLC activation results in the production of inositol 1,4,5-trisphosphate (IP3), and TRPC2 has IP3 receptor (IP3R) binding sites. To determine whether IP3R is involved in Epo-R signaling, TRPC2 mutants were prepared with partial or complete deletions of the COOH-terminal IP3R binding domains. In cells expressing TRPC2 IP3R binding mutants and Epo-R, no significant increase in [Ca2+]i was observed after Epo stimulation. TRPC2 coassociated with Epo-R, PLC, and IP3R, and the association between TRPC2 and IP3R was disrupted in these mutants. Our data demonstrate that Epo-R modulates TRPC2 activation through PLC; that interaction of IP3R with TRPC2 is required; and that Epo-R, TRPC2, PLC, and IP3R interact to form a signaling complex. transient receptor potential protein channels; erythropoietin receptor; calcium channels  相似文献   

5.
To examine the natureof inositol 1,4,5-trisphosphate (IP3)-sensitive andryanodine (Ryn)-sensitive Ca2+ stores in isolated caninepulmonary arterial smooth cells (PASMC), agonist-induced changes inglobal intracellular Ca2+ concentration([Ca2+]i) were measured using fura2-AM fluorescence. Properties of elementary local Ca2+release events were characterized using fluo 3-AM or fluo 4-AM, incombination with confocal laser scanning microscopy. In PASMC, depletion of sarcoplasmic reticulum Ca2+ stores with Ryn(300 µM) and caffeine (Caf; 10 mM) eliminated subsequent Caf-inducedintracellular Ca2+ transients but had little or no effecton the initial IP3-mediated intracellular Ca2+transient induced by ANG II (1 µM). Cyclopiazonic acid (CPA; 10 µM) abolished IP3-induced intracellularCa2+ transients but failed to attenuate the initialCaf-induced intracellular Ca2+ transient. These resultssuggest that in canine PASMC, IP3-, and Ryn-sensitiveCa2+ stores are organized into spatially distinctcompartments while similar experiments in canine renal arterial smoothmuscle cells (RASMC) reveal that these Ca2+ stores arespatially conjoined. In PASMC, spontaneous local intracellular Ca2+ transients sensitive to modulation by Caf and Ryn weredetected, exhibiting spatial-temporal characteristics similar to thosepreviously described for "Ca2+ sparks" in cardiac andother types of smooth muscle cells. After depletion of Ryn-sensitiveCa2+ stores, ANG II (8 nM) induced slow, sustained[Ca2+]i increases originating at sites nearthe cell surface, which were abolished by depleting IP3stores. Discrete quantal-like events expected due to the coordinatedopening of IP3 receptor clusters ("Ca2+puffs") were not observed. These data provide new information regarding the functional properties and organization of intracellular Ca2+ stores and elementary Ca2+ release eventsin isolated PASMC.

  相似文献   

6.
L-Arginine (L-Arg) affects variousparameters that modulate the progression of renal disease. These samefactors [e.g., glomerular filtration rate, changes in mesangialcell (MC) tension, and production of NO] are all controlled atleast in part by changes in MC intracellular Ca2+concentration([Ca2+]i). Wetherefore evaluated the effect of L-Arg on MC[Ca2+]i. We found thatL-Arg inhibits the vasopressin-stimulated rise in MC[Ca2+]i both in rat andmurine cell cultures. This effect does not appear to be due tometabolism of L-Arg to either NO or L-ornithine (L-Orn). Blocking the metabolism of L-Arg withN-monomethyl-L-arginine, an NOsynthase inhibitor, or with 20 mM L-valine(L-Val), an inhibitor of Orn formation,does not reverse the inhibition. However, other cationic amino acids,as well guanidine, the functional group ofL-Arg, all inhibit thevasopressin-stimulated rise in[Ca2+]i,consistent with a structural basis for this effect. We conclude that1)L-Arg inhibitsvasopressin-stimulated murine and rat MC [Ca2+]irise, 2) this inhibition is notmediated by metabolism of L-Arg to either NO or L-Orn, and3) the effect ofL-Arg is due to its cationicfunctional group, guanidine.

  相似文献   

7.
An increase in intracellular free Ca2+ concentration ([Ca2+]i) has been shown to be involved in the increase in ciliary beat frequency (CBF) in response to ATP; however, the signaling pathways associated with inositol 1,4,5-trisphosphate (IP3) receptor-dependent Ca2+ mobilization remain unresolved. Using radioimmunoassay techniques, we have demonstrated the appearance of two IP3 peaks occurring 10 and 60 s after ATP addition, which was strongly correlated with a release of intracellular Ca2+ from internal stores and an influx of extracellular Ca2+, respectively. In addition, ATP-dependent Ca2+ mobilization required protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II activation. We found an increase in PKC activity in response to ATP, with a peak at 60 s after ATP addition. Xestospongin C, an IP3 receptor blocker, significantly diminished both the ATP-induced increase in CBF and the initial transient [Ca2+]i component. ATP addition in the presence of xestospongin C or thapsigargin revealed that the Ca2+ influx is also dependent on IP3 receptor activation. Immunofluorescence and confocal microscopic studies showed the presence of IP3 receptor types 1 and 3 in cultured ciliated cells. Immunogold electron microscopy localized IP3 receptor type 3 to the nucleus, the endoplasmic reticulum, and, interestingly, the plasma membrane. In contrast, IP3 receptor type 1 was found exclusively in the nucleus and the endoplasmic reticulum. Our study demonstrates for the first time the presence of IP3 receptor type 3 in the plasma membrane in ciliated cells and leads us to postulate that the IP3 receptor can directly trigger Ca2+ influx in response to ATP. transduction mechanisms; P2Y receptor; calcium influx  相似文献   

8.
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+ ([Ca2+]m), which fluctuates in coordination with intracellular Ca2+ ([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]i mobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]i mobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]i response to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]i mobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+ stores. Furthermore, PUFA-mediated [Ca2+]i mobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]m with X-rhod-1 and 45Ca2+ indicate that PUFA induce Ca2+ efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, blocks PUFA-induced Ca2+ efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+ release from mitochondria, possibly via the Ca2+ uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]i mobilization in NT2 cells. arachidonic acid; mitochondrial Ca2+ uniporter; G protein-coupled receptor; IP3 receptor  相似文献   

9.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

10.
The intent of this work was to evaluate the role of cAMP inregulation of ciliary activity in frog mucociliary epithelium and toexamine the possibility of cross talk between the cAMP- andCa2+-dependent pathways in thatregulation. Forskolin and dibutyryl cAMP induced strong transientintracellular Ca2+ concentration([Ca2+]i)elevation and strong ciliary beat frequency enhancement with prolongedstabilization at an elevated plateau. The response was not affected byreduction of extracellular Ca2+concentration. The elevation in[Ca2+]iwas canceled by pretreatment with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Underthose experimental conditions, forskolin raised the beat frequency to amoderately elevated plateau, whereas the initial strong rise infrequency was completely abolished. All effects were canceled by H-89,a selective protein kinase A (PKA) inhibitor. The results suggest adual role for PKA in ciliary regulation. PKA releasesCa2+ from intracellular stores,strongly activating ciliary beating, and, concurrently, producesmoderate prolonged enhancement of the beat frequency by aCa2+-independent mechanism.

  相似文献   

11.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

12.
Gap junctions and fluid flow response in MC3T3-E1 cells   总被引:2,自引:0,他引:2  
In thecurrent study, we examined the role of gap junctions in oscillatoryfluid flow-induced changes in intracellular Ca2+concentration and prostaglandin release in osteoblastic cells. Thiswork was completed in MC3T3-E1 cells with intact gap junctional communication as well as in MC3T3-E1 cells rendered communication deficient through expression of a dominant-negative connexin. Ourresults demonstrate that MC3T3-E1 cells with intact gap junctions respond to oscillatory fluid flow with significant increases in prostaglandin E2 (PGE2) release, whereas cellswith diminished gap junctional communication do not. Furthermore, wefound that cytosolic Ca2+ (Ca) responsewas unaltered by the disruption in gap junctional communication and wasnot significantly different among the cell lines. Thus our resultssuggest that gap junctions contribute to the PGE2 but notto the Ca response to oscillatory fluid flow. Thesefindings implicate gap junctional intercellular communication (GJIC) inbone cell ensemble responsiveness to oscillatory fluid flow and suggestthat gap junctions and GJIC play a pivotal role in mechanotransduction mechanisms in bone.

  相似文献   

13.
Imaging of intracellular calcium stores in single permeabilized lens cells   总被引:1,自引:0,他引:1  
Intracellular Ca2+ storesin permeabilized sheep lens cells were imaged with mag-fura 2 tocharacterize their distribution and sensitivity toCa2+-releasing agents. Inositol1,4,5-trisphosphate (IP3) orcyclic ADP-ribose (cADPR) releasedCa2+ from intracellularCa2+ stores that were maintainedby an ATP-dependent Ca2+ pump. TheIP3 antagonist heparin inhibitedIP3- but not cADPR-mediated Ca2+ release, whereas the cADPRantagonist 8-amino-cADPR inhibited cADPR- but notIP3-mediatedCa2+ release, indicating thatIP3 and cADPR were operatingthrough separate mechanisms. ACa2+ store sensitive toIP3, cADPR, and thapsigarginappeared to be distributed throughout all intracellular regions. Insome cells a Ca2+ storeinsensitive to IP3, cADPR,thapsigargin, and 2,4-dinitrophenol, but not ionomycin, was present ina juxtanuclear region. We conclude that lens cells containintracellular Ca2+ stores that aresensitive to IP3, cADPR, andthapsigargin, as well as a Ca2+store that appears insensitive to all these agents.  相似文献   

14.
We wrote a program that runs as a Microsoft Excel spreadsheet to calculate the diffusion of Ca2+ in a spherical cell in the presence of a fixed Ca2+ buffer and two diffusible Ca2+ buffers, one of which is considered to be a fluorescent Ca2+ indicator. We modeled Ca2+ diffusion during and after Ca2+ influx across the plasma membrane with parameters chosen to approximate amphibian sympathetic neurons, mammalian adrenal chromaffin cells, and rat dorsal root ganglion neurons. In each of these cell types, the model predicts that spatially averaged intracellular Ca2+ activity ([Ca2+]avg) rises to a high peak and starts to decline promptly on the termination of Ca2+ influx. We compared [Ca2+]avg with predictions of ratiometric Ca2+ measurements analyzed in two ways. Method 1 sums the fluorescence at each of the two excitation or emission wavelengths over the N compartments of the model, calculates the ratio of the summed signals, and converts this ratio to Ca2+ ([Ca2+]avg,M1). Method 2 sums the measured number of moles of Ca2+ in each of the N compartments and divides by the volume of the cell ([Ca2+]avg,M2). [Ca2+]avg,M1 peaks well after the termination of Ca2+ influx at a value substantially less than [Ca2+]avg because the summed signals do not reflect the averaged free Ca2+ if the signals come from compartments containing gradients in free Ca2+ spanning nonlinear regions of the relationship between free Ca2+ and the fluorescence signals. In contrast, [Ca2+]avg,M2 follows [Ca2+]avg closely. intracellular calcium; kinetic model; diffusion coefficient; fura 2ff; furaptra  相似文献   

15.
In cultured porcine aortic smooth muscle cells,sphingosylphosphorylcholine (SPC), ATP, or bradykinin (BK) induced arapid dose-dependent increase in the cytosolicCa2+ concentration([Ca2+]i)and also stimulated inositol 1,4,5-trisphosphate(IP3) generation. Pretreatmentof cells with pertussis toxin blocked the SPC-induced IP3 generation and[Ca2+]iincrease but had no effect on the action of ATP or BK. In addition, SPCstimulated the mitogen-activated protein kinase (MAPK) and increasedDNA synthesis, whereas neither ATP nor BK produced such effects. Boththe SPC-induced MAPK activation and DNA synthesis were pertussis toxinsensitive. SPC-induced MAPK activation was blocked by treatment ofcells with the phospholipase C inhibitor, U-73122, or the intracellularCa2+-ATPase inhibitor,thapsigargin, but not by removal of extracellular Ca2+. Lysophosphatidic acidinduced cellular responses similar to SPC in a pertussistoxin-sensitive manner in terms of[Ca2+]iincrease, IP3 generation, MAPKactivation, and DNA synthesis. Platelet-derived growth factor (PDGF)also induced a[Ca2+]iincrease, MAPK activation, and DNA synthesis in the same cells; however, the PDGF-induced MAPK activation was not sensitive to pertussis toxin and changes in[Ca2+]i.SPC-induced MAPK activation was inhibited by pretreatment of cells withstaurosporine, W-7, or calmidazolium. Our results suggest that, inporcine aortic smooth muscle cells, MAPK is not activated by theincrease in[Ca2+]iunless a pertussis toxin-sensitive G protein is simultaneously stimulated, indicating the role ofCa2+ in pertussis toxin-sensitiveG protein-mediated MAPK activation.

  相似文献   

16.
Despite extensive work in the field of glioblastoma research no significant increase in survival rates for this devastating disease has been achieved. It is known that disturbance of intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi) regulation could be involved in tumor formation. The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a major regulator of [Ca2+]i. We have investigated the effect of inhibition of SERCA by thapsigargin (TG) on [Ca2+]i and pHi in human primary glioblastoma multiforme (GBM) cells and GBM cell lines, compared with normal human astrocytes, using the fluorescent indicators fura-2 and BCECF, respectively. Basal [Ca2+]i was higher in SK-MG-1 and U87 MG but not in human primary GBM cells compared with normal astrocytes. However, in tumor cells, TG evoked a much larger and faster [Ca2+]i increase than in normal astrocytes. This increase was prevented in nominally Ca2+-free buffer and by 2-APB, an inhibitor of store-operated Ca2+ channels. In addition, TG-activated Ca2+ influx, which was sensitive to 2-APB, was higher in all tumor cell lines and primary GBM cells compared with normal astrocytes. The pHi was also elevated in tumor cells compared with normal astrocytes. TG caused acidification of both normal and all GBM cells, but in the tumor cells, this acidification was followed by an amiloride- and 5-(N,N-hexamethylene)-amiloride-sensitive recovery, indicating involvement of a Na+/H+ exchanger. In summary, inhibition of SERCA function revealed a significant divergence in intracellular Ca2+ homeostasis and pH regulation in tumor cells compared with normal human astrocytes. fura-2; BCECF; store-operated calcium channels  相似文献   

17.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

18.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

19.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

20.
We examined the effectsof metabolic inhibition on intracellular Ca2+ release insingle pulmonary arterial smooth muscle cells (PASMCs). Severemetabolic inhibition with cyanide (CN, 10 mM) increased intracellularcalcium concentration ([Ca2+]i) and activatedCa2+-activated Cl currents[ICl(Ca)] in PASMCs, responses that were greatlyinhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents andCa2+ sparks in PASMCs. In Xenopus oocytes, CNalso induced Ca2+ release and activatedICl(Ca), and these responses were inhibited by thapsigarginand cyclopiazonic acid to deplete sarcoplasmic reticulum (SR)Ca2+, whereas neither heparin nor anti-inositol1,4,5-trisphosphate receptor (IP3R) antibodies affected CNresponses. In both PASMCs and oocytes, CN-evoked Ca2+release was inhibited by carbonyl cyanidem-chlorophenylhydrazone (CCCP) and oligomycin or CCCP andthapsigargin. Whereas hypoxic stimuli resulted in Ca2+release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition withCN increases [Ca2+]i in both pulmonary andsystemic artery myocytes by stimulating Ca2+ release fromthe SR and mitochondria.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号