首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blower SM  Chou T 《Nature medicine》2004,10(10):1111-1116
'Hot zones' are areas that have >5% prevalence (or incidence) of multidrug-resistant tuberculosis (MDRTB). We present a new mathematical model (the amplifier model) that tracks the emergence and evolution of multiple (pre-MDR, MDR and post-MDR) strains of drug-resistant Mycobacterium tuberculosis. We reconstruct possible evolutionary trajectories that generated hot zones over the past three decades, and identify the key causal factors. Results are consistent with recently reported World Health Organization (WHO) data. Our analyses yield three important insights. First, paradoxically we found that areas with programs that successfully reduced wild-type pansensitive strains often evolved into hot zones. Second, some hot zones emerged even when MDR strains were substantially less fit (and thus less transmissible) than wild-type pansensitive strains. Third, levels of MDR are driven by case-finding rates, cure rates and amplification probabilities. To effectively control MDRTB in the hot zones, it is essential that the WHO specify a goal for minimizing the amplification probability.  相似文献   

2.
Over the past decade, numerous studies have identified tuberculosis patients in whom more than one distinct strain of Mycobacterium tuberculosis is present. While it has been shown that these mixed strain infections can reduce the probability of treatment success for individuals simultaneously harboring both drug-sensitive and drug-resistant strains, it is not yet known if and how this phenomenon impacts the long-term dynamics for tuberculosis within communities. Strain-specific differences in immunogenicity and associations with drug resistance suggest that a better understanding of how strains compete within hosts will be necessary to project the effects of mixed strain infections on the future burden of drug-sensitive and drug-resistant tuberculosis. In this paper, we develop a modeling framework that allows us to investigate mechanisms of strain competition within hosts and to assess the long-term effects of such competition on the ecology of strains in a population. These models permit us to systematically evaluate the importance of unknown parameters and to suggest priority areas for future experimental research. Despite the current scarcity of data to inform the values of several model parameters, we are able to draw important qualitative conclusions from this work. We find that mixed strain infections may promote the coexistence of drug-sensitive and drug-resistant strains in two ways. First, mixed strain infections allow a strain with a lower basic reproductive number to persist in a population where it would otherwise be outcompeted if has competitive advantages within a co-infected host. Second, some individuals progressing to phenotypically drug-sensitive tuberculosis from a state of mixed drug-sensitive and drug-resistant infection may retain small subpopulations of drug-resistant bacteria that can flourish once the host is treated with antibiotics. We propose that these types of mixed infections, by increasing the ability of low fitness drug-resistant strains to persist, may provide opportunities for compensatory mutations to accumulate and for relatively fit, highly drug-resistant strains of M. tuberculosis to emerge.  相似文献   

3.

Background

The “fitness” of an infectious pathogen is defined as the ability of the pathogen to survive, reproduce, be transmitted, and cause disease. The fitness of multidrug-resistant tuberculosis (MDRTB) relative to drug-susceptible tuberculosis is cited as one of the most important determinants of MDRTB spread and epidemic size. To estimate the relative fitness of drug-resistant tuberculosis cases, we compared the incidence of tuberculosis disease among the household contacts of MDRTB index patients to that among the contacts of drug-susceptible index patients.

Methods and Findings

This 3-y (2010–2013) prospective cohort household follow-up study in South Lima and Callao, Peru, measured the incidence of tuberculosis disease among 1,055 household contacts of 213 MDRTB index cases and 2,362 household contacts of 487 drug-susceptible index cases.A total of 35/1,055 (3.3%) household contacts of 213 MDRTB index cases developed tuberculosis disease, while 114/2,362 (4.8%) household contacts of 487 drug-susceptible index patients developed tuberculosis disease. The total follow-up time for drug-susceptible tuberculosis contacts was 2,620 person-years, while the total follow-up time for MDRTB contacts was 1,425 person-years. Using multivariate Cox regression to adjust for confounding variables including contact HIV status, contact age, socio-economic status, and index case sputum smear grade, the hazard ratio for tuberculosis disease among MDRTB household contacts was found to be half that for drug-susceptible contacts (hazard ratio 0.56, 95% CI 0.34–0.90, p = 0.017). The inference of transmission in this study was limited by the lack of genotyping data for household contacts. Capturing incident disease only among household contacts may also limit the extrapolation of these findings to the community setting.

Conclusions

The low relative fitness of MDRTB estimated by this study improves the chances of controlling drug-resistant tuberculosis. However, fitter multidrug-resistant strains that emerge over time may make this increasingly difficult.  相似文献   

4.
Predicting the unpredictable: transmission of drug-resistant HIV   总被引:10,自引:0,他引:10  
We use a mathematical model to understand (from 1996 to 2001) and to predict (from 2001 to 2005) the evolution of the epidemic of drug-resistant HIV in San Francisco. We predict the evolutionary trajectories for 1,000 different drug-resistant strains with each strain having a different fitness relative to a drug-sensitive strain. We calculate that the current prevalence of resistance is high, and predict it will continue to rise. In contrast, we calculate that transmission of resistance is currently low, and predict it will remain low. We show that the epidemic of resistance is being generated mainly by the conversion of drug-sensitive cases to drug-resistant cases, and not by the transmission of resistant strains. We also show that transmission of resistant strains has not increased the overall number of new HIV infections. Our results indicate that transmission of resistant strains is, and will remain, a relatively minor public health problem.  相似文献   

5.
The irrational use of antituberculous drugs led to the emergence of resistant strains of M. tuberculosis. Every year in the world, around 440 000 new tuberculosis cases are due to bacilli that are resistant to the two main antituberculous drugs, isoniazid and rifampicin (also known as multidrug resistant or MDR). Treatment of MDR tuberculosis is difficult and has been based for twenty years on the use of fluoroquinolones and injectable antibiotics such as amikacin, kanamycin and capreomycin. Consequently, strains resistant to the latter drugs, so-called extensively drug resistant strains or XDR, have recently emerged. XDR tuberculosis is very difficult to treat and the prognosis is very close to that of untreated tuberculosis with a mortality rate that can reach 50 % to 100 %. To avoid the emergence of more resistant strains that may lead to almost untreatable disease, we must focus our efforts on the right management of drug susceptible tuberculosis. Basic principles for avoiding accumulation of resistances in selected strains are outlined in the article.  相似文献   

6.

Background

Multi Drug Resistant Tuberculosis (MDR TB) is a threat to global tuberculosis control. A significant fitness cost has been associated with DR strains from specific lineages. Evaluation of the influence of the competing drug susceptible strains on fitness of drug resistant strains may have an important bearing on understanding the spread of MDR TB. The aim of this study was to evaluate the fitness of MDR TB strains, from a TB endemic region of western India: Mumbai, belonging to 3 predominant lineages namely CAS, Beijing and MANU in the presence of drug susceptible strains from the same lineages.

Methodology

Drug susceptible strains from a single lineage were mixed with drug resistant strain, bearing particular non synonymous mutation (rpoB D516V; inhA, A16G; katG, S315T1/T2) from the same or different lineages. Fitness of M.tuberculosis (M.tb) strains was evaluated using the difference in growth rates obtained by using the CFU assay system.

Conclusion/Significance

While MANU were most fit amongst the drug susceptible strains of the 3 lineages, only Beijing MDR strains were found to grow in the presence of any of the competing drug susceptible strains. A disproportionate increase in Beijing MDR could be an alarm for an impending epidemic in this locale. In addition to particular non synonymous substitutions, the competing strains in an environment may impact the fitness of circulating drug resistant strains.  相似文献   

7.
The emergence of multidrug resistant tuberculosis (MDRTB) highlights the urgent need to understand the mechanisms of resistance to the drugs and to develop a new arena of therapeutics to treat the disease. Ethambutol, isonazid, pyrazinamide, rifampicin are first line of drugs against TB, whereas aminoglycoside, polypeptides, fluoroquinolone, ethionamide are important second line of bactericidal drugs used to treat MDRTB, and resistance to one or both of these drugs are defining characteristic of extensively drug resistant TB. We retrieved 1,221 resistant genes from Antibiotic Resistance Gene Database (ARDB), which are responsible for resistance against first and second line antibiotics used in treatment of Mycobacterium tuberculosis infection. From network analysis of these resistance genes, 53 genes were found to be common. Phylogenetic analysis shows that more than 60% of these genes code for acetyltransferase. Acetyltransferases detoxify antibiotics by acetylation, this mechanism plays central role in antibiotic resistance. Seven acetyltransferase (AT-1 to AT-7) were selected from phylogenetic analysis. Structural alignment shows that these acetyltransferases share common ancestral core, which can be used as a template for structure based drug designing. From STRING analysis it is found that acetyltransferase interact with 10 different proteins and it shows that, all these interaction were specific to M. tuberculosis. These results have important implications in designing new therapeutic strategies with acetyltransferase as lead co-target to combat against MDR as well as Extreme drug resistant (XDR) tuberculosis.

Abbreviations

AA - amino acid, AT - Acetyltransferase, AAC - Aminoglycoside 2''-N-acetyltransferase, XDR - Extreme drug-resistant, MDR - Multidrug-resistant, Mtb - Mycobacterium tuberculosis, TB - Tuberculosis.  相似文献   

8.

Background

Multidrug resistant tuberculosis (MDR-TB) is a major threat for global tuberculosis control. The W-Beijing Mycobacterium tuberculosis genotype has been associated with drug resistance. Elucidation of the mechanisms underlying this epidemiological finding may have an important role in the control of MDR-TB. The aim of this study was to evaluate the fitness of drug-susceptible and MDR M. tuberculosis strains of the W-Beijing genotype compared with that of Non-W-Beijing strains.

Methodology/Principal Findings

Fitness of M. tuberculosis strains was determined by evaluating the difference in the growth curves obtained in the MGIT960 automated system and assessing the competitive growth capacity between W-Beijing and non-W-Beijing strains. The W-Beijing MDR strains had a significant longer lag phase duration compared to the other strains but did not present a significant fitness cost. When grown in competition they had an advantage only in medium containing 0.1% Tween 80.

Conclusions/Significance

It was not possible to confirm a selective advantage of W-Beijing strains to grow, except for differences in their resistance to Tween 80. Further studies are needed to elucidate the putative advantage of W-Beijing strains compared to other genotypes.  相似文献   

9.
The frequency of individual genetic mutations conferring drug resistance (DR) to Mycobacterium tuberculosis has not been studied previously in Central America, the place of origin of many immigrants to the United States. The current gold standard for detecting multidrug-resistant tuberculosis (MDR-TB) is phenotypic drug susceptibility testing (DST), which is resource-intensive and slow, leading to increased MDR-TB transmission in the community. We evaluated multiplex allele-specific polymerase chain reaction (MAS-PCR) as a rapid molecular tool to detect MDR-TB in Panama. Based on DST, 67 MDR-TB and 31 drug-sensitive clinical isolates were identified and cultured from an archived collection. Primers were designed to target five mutation hotspots that confer resistance to the first-line drugs isoniazid and rifampin, and MAS-PCR was performed. Whole-genome sequencing confirmed DR mutations identified by MAS-PCR, and provided frequencies of genetic mutations. DNA sequencing revealed 70.1% of MDR strains to have point mutations at codon 315 of the katG gene, 19.4% within mabA-inhA promoter, and 98.5% at three hotspots within rpoB. MAS-PCR detected each of these mutations, yielding 82.8% sensitivity and 100% specificity for isoniazid resistance, and 98.4% sensitivity and 100% specificity for rifampin resistance relative to DST. The frequency of individual DR mutations among MDR strains in Panama parallels that of other TB-endemic countries. The performance of MAS-PCR suggests that it may be a relatively inexpensive and technically feasible method for rapid detection of MDR-TB in developing countries.  相似文献   

10.
BackgroundThe continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.ConclusionsIn the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.  相似文献   

11.

Objective and Methods

A long-term observational study was conducted in Samara, Russia to assess the survival and risk factors for death of a cohort of non-multidrug resistant tuberculosis (non-MDRTB) and multidrug resistant tuberculosis (MDRTB) civilian and prison patients and a civilian extensive drug-resistant tuberculosis (XDRTB) cohort.

Results

MDRTB and XDRTB rates of 54.8% and 11.1% were identified in the region. Half (50%) of MDRTB patients and the majority of non-MDRTB patients (71%) were still alive at 5 years. Over half (58%) of the patients died within two years of establishing a diagnosis of XDRTB. In the multivariate analysis, retreatment (HR = 1.61, 95%CI 1.04, 2.49) and MDRTB (HR = 1.67, 95%CI 1.17, 2.39) were significantly associated with death within the non-MDR/MDRTB cohort. The effect of age on survival was relatively small (HR = 1.01, 95%CI 1.00, 1.02). No specific factor affected survival of XDRTB patients although median survival time for HIV-infected versus HIV-negative patients from this group was shorter (185 versus 496 days). The majority of MDRTB and XDRTB strains (84% and 92% respectively) strains belonged to the Beijing family. Mutations in the rpoB (codon 531 in 81/92; 88.8%), katG (mutation S315T in 91/92, 98.9%) and inhA genes accounted for most rifampin and isoniazid resistance respectively, mutations in the QRDR region of gyrA for most fluroquinolone resistance (68/92; 73.5%).

Conclusions

Alarmingly high rates of XDRTB exist. Previous TB treatment cycles and MDR were significant risk factors for mortality. XDRTB patients'' survival is short especially for HIV-infected patients. Beijing family strains comprise the majority of drug-resistant strains.  相似文献   

12.
The emergence of drug resistant Mycobacterium tuberculosis has become a global threat to tuberculosis (TB) prevention and control efforts. This study aimed to determine the drug resistance profiles and DNA fingerprints of M. tuberculosis strains isolated from patients with relapsed or retreatment pulmonary TB in Chiang Rai province in northern Thailand. Significant differences in multidrug resistance (MDR) (P = 0.025) and resistance to isoniazid (P = 0.025) and rifampin (P = 0.046) between first and second registrations of patients with retreatment TB were found. However, there were no significant differences in resistance to any drugs in patients with relapsed TB. The rate of MDR‐TB strains was 12.2% among new patients at first registration, 22.5% among patients with recurrence who had previously undergone treatment at second registration and 12.5% at third registration. Two retreatment patients whose initial treatment had failed had developed MDR‐TB with resistance to all TB drugs tested, including rifampin, isoniazid, streptomycin and ethambutol. IS6110‐RFLP analysis revealed that 66.7% (10/15 isolates) of MDR‐TB belonged to the Beijing family. In most cases, IS6110‐RFLP patterns of isolates from the same patients were identical in relapse and retreatment groups. However, some pairs of isolates from retreatment patients after treatment failure had non‐identical IS6110‐RFLP patterns. These results suggest that, after failure and default treatment, patients with retreatment tuberculosis have a significantly greater risk of MDR‐TB, isoniazid and rifampin resistance than do other patients.  相似文献   

13.
The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues.  相似文献   

14.
15.
The occurrence of drug resistance in Mycobacterium tuberculosis, the aetiological agent of tuberculosis (TB), is hampering the management and control of TB in the world. Here we present a computational analysis of recently sequenced drug-sensitive (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. Single-nucleotide variations (SNVs) were identified in a pair-wise manner using the anchor-based whole genome comparison (ABWGC) tool and its modified version. For this analysis, four fully sequenced genomes of different strains of M. tuberculosis were taken along with three KwaZulu-Natal (KZN) strains isolated from South Africa including one XDR and one MDR strain. KZN strains were compared with other fully sequenced strains and also among each other. The variations were analysed with respect to their biological influence as a result of either altered structure or synthesis. The results suggest that the DR phenotype may be due to changes in a number of genes. The database on KZN strains can be accessed through the website .  相似文献   

16.
BackgroundMultidrug resistance (MDR) is a serious impediment to cancer treatment, with overexpression of drug efflux pumps such as P-glycoprotein (P-gp) playing a significant role. In spite of being a major clinical challenge, to date there is no simple, minimally invasive and clinically validated method for diagnosis of the MDR phenotype using non-tumour biological samples. Recently, P-gp has been found in extracellular vesicles (EVs) shed by MDR cancer cells. This study aimed to compare the EVs shed by MDR cells and their drug-sensitive cellular counterparts, in order to identify biomarkers of MDR.MethodsTwo pairs of MDR and drug-sensitive counterpart tumour cell lines were studied as models. EVs were characterized in terms of size and molecular markers and their protein content was investigated by proteomic analysis and Western blot.ResultsWe found that MDR cells produced more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart. EVs from MDR cells contained P-gp and presented a different content of proteins known to be involved in the biogenesis of EVs, particularly in the biogenesis of exosomes.ConclusionsThe determination of the size and of this particular protein content of EVs shed by tumour cells may allow the development of a minimally-invasive simple method of detecting and predicting MDR.General significanceThis work describes for the first time that cancer multidrug resistant cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells, carrying a specific content of proteins involved in EV biogenesis that could be further studied as biomarkers of MDR.  相似文献   

17.
Bacterial drug resistance is often associated with a fitness cost. Large outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB have been described that predominately affect persons with HIV infection. We obtained four closely-related Mycobacterium tuberculosis strains (genotype F15/LAM4/KZN) from an outbreak in KwaZulu-Natal (KZN), South Africa, including drug-sensitive, MDR, and XDR clinical isolates. We compared the virulence of these strains in a murine model of aerosol M. tuberculosis infection for four phenotypes: (1) competitive in vivo growth in lung and spleen, (2) non-competitive in vivo growth in lung and spleen, (3) murine survival time, and (4) lung pathology. When mixtures of sensitive, MDR, and XDR KZN strains were aerosolized (competitive model), lung CFUs were similar at 60 days after infection, and spleen CFUs were ordered as follows: sensitive > MDR > XDR. When individual strains were aerosolized (non-competitive model), modest differences in lung and spleen CFUs were observed with the same ordering. C57BL/6, C3H/FeJ, and SCID mice all survived longer after infection with MDR as compared to sensitive strains. SCID mice infected with an XDR strain survived longer than those infected with MDR or sensitive strains. Lung pathology was reduced after XDR TB infection compared to sensitive or MDR TB infection. In summary, increasing degrees of drug resistance were associated with decreasing murine virulence in this collection of KZN strains as measured by all four virulence phenotypes. The predominance of HIV-infected patients in MDR and XDR TB outbreaks may be explained by decreased virulence of these strains in humans.  相似文献   

18.

Background

South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known.

Methods

We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations.

Results

Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin.

Conclusions

XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.  相似文献   

19.
The continuing global epidemic of tuberculosis, the increasing rate of multidrug resistant (MDR) tuberculosis and the more recent emergence of extensively drug resistant (XDR) tuberculosis are great causes for concern. A major international effort is currently underway to optimize current drug therapies and to discover new drugs that are active against these organisms. This effort has created a pipeline of new candidate drugs at various stages of preclinical and early clinical evaluations. Major challenges still exist, however, varying from the standardization and application of current animal models and their application to drug discovery and characterization to the fact that our knowledge about the basic biology of the MDR and XDR strains of Mycobacterium tuberculosis is minimal at best.  相似文献   

20.

Background

Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years.

Methods and Findings

We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort.

Conclusions

Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号