首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCK/dopamine interactions in Fawn-Hooded and Wistar-Kyoto rat brain   总被引:3,自引:0,他引:3  
The aim of this study was to compare the actions of CCK neuropeptides within the nucleus accumbens (N.Acc) of alcohol preferring (Fawn-Hooded, FH) and alcohol nonpreferring (Wistar-Kyoto, WKY) rats. CCK-8S (30-300 nM) facilitated the K(+) stimulated release of [(3)H]dopamine (DA) from N.Acc prisms in both rat strains, whereas CCK-4 (30 nM-1 microM) caused a significant decrease of evoked [(3)H]DA in the FH rat only. A scattered distribution of CCK-A and -B receptor immunopositive varicose fibers were visualized throughout the N.Acc of both rat strains along with a topographic distribution of CCK receptor positive cells throughout the ventral mesencephalon.  相似文献   

2.
The Wistar-Kyoto (WKY) rat is a stress-sensitive strain that is prone to depressive-like behavior in various experimental paradigms. While recent work has highlighted a role for dopamine (DA) in the pathology of depression, research on the WKY rat has also suggested that dysfunction of DA pathways may be an important component of the behavior in this strain. Previous work has demonstrated differential patterns of DA transporter sites, DA D2 and D3 receptors in WKY rats compared to control strains. To further this work, the present study utilized autoradiographic analysis of [3H]-SCH23390 binding to DA D1 receptors in various brain regions of na?ve male WKY and Wistar (WIS) rats. The results revealed a significant strain difference, with WKY rats demonstrating lower D1 binding in the caudate putamen and regions of the nucleus accumbens (p<0.05). An opposite pattern was found in the substantia nigra pars reticulata where D1 binding was higher in WKY rats compared to WIS rats (p<0.05). Because the D1 receptor represents a critical site where DA acts to modify behavior related to depression, the altered expression of this receptor in the WKY rat found in the present study may be reflective of the depressive susceptibility noted in this strain.  相似文献   

3.
4.
The dopamine (DA) pathway mediates numerous neuronal functions which are implicated in psychiatric disorders. Previously, our lab investigated the status of the dopamine transporter in the Wistar-Kyoto rat, a purported rodent model of depressive behavior, and reported significant alterations in transporter binding sites in several brain regions when compared to control rat strains. Given that DA-2 and DA-3 receptors belong to the same class of DA receptors, are co-localized in the mesolimbic and nigrostriatal regions of the brain and function as autoreceptors, this study mapped the distribution of central DA-2 and DA-3 receptors in Wistar-Kyoto and Wistar rats. The results indicated that while the binding of 125I-sulpride to DA-2 receptors was higher in the nucleus accumbens (shell) and ventral tegmental area, it was lower in the nucleus accumbens (core), caudate putamen and hypothalamus in Wistar-Kyoto compared to Wistar rats. In contrast, the binding of 125I-sulpride to DA-3 receptors was higher in the caudate putamen, nucleus accumbens (shell and core) and islands of Calleja in Wistar-Kyoto compared to Wistar rats. Given that DA-2 like receptors in the ventral tegmental area function as autoreceptors, it is possible that the greater inhibitory effects exerted by DA-2 and DA-3 receptors in Wistar-Kyoto rats may lead to a net deficit in DA levels in areas receiving projection from this cell body area.  相似文献   

5.
Light microscopic autoradiography was used to visualize the neuroanatomical distribution of nicotinic receptors in rat brain using a novel radioligand, [3H]methylcarbamylcholine (MCC). Specific [3H]MCC binding to slide-mounted tissue sections of rat brain was saturable, reversible and of high affinity. Data analysis revealed a single population of [3H]MCC binding sites with a Kd value of 1.8 nM and Bmax of 20.1 fmol/mg protein. Nicotinic agonists and antagonists competed for [3H]MCC binding sites in slide-mounted brain sections with much greater potency than muscarinic drugs. The rat brain areas containing the highest densities of [3H]MCC binding were in thalamic regions, the medial habenular nucleus and the superior colliculus. Moderate densities of [3H]MCC binding were seen over the anterior cingulate cortex, the nucleus accumbens, the zona compacta of substantia nigra and ventral tegmental area. Low densities of [3H]MCC binding were found in most other brain regions. These data suggest that [3H]MCC selectively labels central nicotinic receptors and that these receptors are concentrated in the thalamus, the medial habenular nucleus and the superior colliculus of the rat brain.  相似文献   

6.
Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of 125I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. 125I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.  相似文献   

7.
8.
Abstract: A survey of the regional distribution of binding of 1 nM [3H](3-MeHis2)thyrotropin-releasing hormone ([3H]MeTRH) to TRH receptors in the brains of eight mammalian species revealed major species differences in both the absolute and relative values of TRH receptor binding in different brain regions. Several brain regions exhibited binding equal to or exceeding that in the anterior pituitary gland of the same species, including the amygdaia in the guinea pig and rat, the hypothalamus in the guinea pig, the nucleus accumbens in the rabbit, and all these and other regions in the cat and dog, for which pituitary binding was exceptionally low. Species could be divided into two groups according to which brain region appeared highest in binding: rabbits, sheep, and cattle had highest binding in the nucleus accumbens/septal area, whereas guinea pigs, rats, dogs, cats, and pigs had highest binding in the amygdala/temporal cortex area. The nucleus accumbens consistently exceeded the caudate-putamen in receptor binding. For most brain regions, rabbits, rodents, and sheep tended to be higher than carnivores, cattle, or pigs. Further regions that exhibited appreciable binding in most species included the olfactory bulb and tubercle, hippocampus, and various cortical and brain stem areas. In fact, essentially all brain regions appeared to have detectable levels of TRH receptors in at least some species, but no rat peripheral tissues have yet shown detectable receptor binding. The species differences appeared to reflect largely if not entirely differences in receptor density, although this was not tested in every species.  相似文献   

9.
[Arg8]-Vasopressin (AVP) has been shown to exert characteristic central physiological actions in the ventral septal area of the rat brain. This study reports the characterization of receptors for AVP in synaptic plasma membranes prepared from the ventral septal area, the lateral septum, and the hippocampus. Binding of [3H]AVP was temperature and time dependent, linearly related to protein concentration, saturable, and specific. Scatchard plot analysis suggested the presence of a population of binding sites in the three brain areas with dissociation constants and maximal binding capacities, respectively, of 1.06 +/- 0.39 nM and 24.0 +/- 7.01 fmol/mg of protein (mean +/- SEM; n = 3 for the ventral septal area, 0.92 +/- 0.13 nM and 47.0 +/- 4.96 fmol/mg of protein (n = 3) for the lateral septum, and 0.91 +/- 0.14 nM and 25 +/- 5.02 fmol/mg of protein (n = 3) for the hippocampus. In all three brain regions, the rank order of potencies of several vasopressin analogs, unrelated peptides, and other compounds for competitive displacement of ligand indicated a receptor with properties resembling those of the V1-like receptor for AVP. These data document the presence of a high-affinity, V1-like vasopressin receptor in the rat ventral septal area for which the pharmacological properties are similar to those previously reported in physiological studies.  相似文献   

10.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

11.
Results of numerous studies indicate that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) modulates central dopamine systems, and that GABA(B) receptors may play a primary role in decreasing dopamine release. To determine if chronic cocaine administration alters the functional coupling of GABA(B) receptors to G-proteins in central dopamine systems, male F-344 rats received cocaine (15 mg/kg/injection) or saline three times a day at hourly intervals for fourteen consecutive days. Rats were decapitated one hour after the last injection and crude membrane preparations were made from the substantia nigra, caudate-putamen, ventral tegmental area, nucleus accumbens, and frontal cortex of individual rats. The ability of the specific GABA(B) receptor agonist baclofen to stimulate 35S-GTPgammaS binding in each of these regions was determined for individual animals. Additionally, baclofen-stimulated 35S-GTPgammaS binding in each of these regions in rats that received cocaine was compared to baclofen-stimulated 35S-GTPgammaS binding in rats that received control injections of saline. The EC50 of baclofen and maximal baclofen-stimulated 35S-GTPgammaS binding over basal levels were determined in each brain region in the saline group and in the cocaine group. Two-way ANOVA revealed a significant decrease in GABA(B) receptor-stimulated 35S-GTPgammaS binding in the ventral tegmental area of the cocaine group compared to the saline group. These data suggest that chronic exposure to cocaine decreases the functional coupling of GABA(B) receptors to G-proteins selectively in the ventral tegmental area. This finding may have implications in the augmented extracellular dopamine levels seen in the nucleus accumbens of rats that have been sensitized to cocaine.  相似文献   

12.
5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.  相似文献   

13.
Enterostatin, a pentapeptide released from the exocrine pancreas and gastrointestinal tract, selectively inhibits fat intake through activation of an afferent vagal signaling pathway. This study investigated if the effects of enterostatin were mediated through a CCK-dependent pathway. The series of in vivo and in vitro experiments included studies of 1) the feeding effect of peripheral enterostatin on Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors, 2) the effect of CCK-8S on the intake of a two-choice high-fat (HF)/low-fat (LF) diet, 3) the effects of peripheral or central injection of the CCK-A receptor antagonist lorglumide on the feeding inhibition induced by either central or peripheral enterostatin, and 4) the ability of enterostatin to displace CCK binding in a 3T3 cell line expressing CCK-A receptor gene and in rat brain sections. The results showed that OLTEF rats did not respond to enterostatin (300 microg/kg ip) in contrast to the 23% reduction in intake of HF diet in Long Evans Tokushima Otsuka (LETO) control rats. CCK (1 microg/kg ip) decreased the intake of the HF diet in a two-choice diet regime with a compensatory increase in intake of the LF diet. Peripheral injection of lorglumide (300 microg/kg) blocked the feeding inhibition induced by either near-celiac arterial or intracerebroventricular enterostatin, whereas intracerebroventricular lorglumide (5 nmol icv) only blocked the response to intracerebroventricular enterostatin but not to arterial enterostatin. Enterostatin did not bind on CCK-A receptors because neither enterostatin nor its analogs VPDPR and beta-casomorphin displaced [3H]L-364,718 from CCK-A receptors expressed in 3T3 cells or the binding of 125I-CCK-8S from rat brain sections. The data suggest that both the peripheral and central responses to enterostatin are mediated through or dependent on peripheral and central CCK-A receptors.  相似文献   

14.
The Wistar-Kyoto (WKY) rat strain has been described as an animal model of depressive behavior that consumes significantly greater amounts of alcohol compared to the Wistar (WIS) rat strain. Since the mesolimbic dopamine (DA) type-2 (D2) receptors mediate reward-related behaviors, the present study measured the binding of [125I]-Iodosulpiride to D2 receptors in the brains of WKY versus WIS rats following 24 days of voluntary alcohol or water consumption. Alcohol consuming WKY rats showed a significant increase in D2 receptor binding in several regions of the mesolimbic and nigrostriatal systems. In contrast, alcohol consuming WIS rats showed a reduction in D2 receptor binding in DA cell body areas. The differential regulation of D2 receptors by voluntary alcohol consumption in the two rat strains suggests that D2 receptor mediated neurotransmission may be playing a role in the increased alcohol drinking behavior reported in WKY rats.  相似文献   

15.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

16.
P Leroux  G Pelletier 《Peptides》1984,5(3):503-506
Somatostatin-14 (S14) and its precursor, somatostatin-28 (S28), are widely distributed throughout the rat brain, suggesting that they could act as neurotransmitter or neuromodulator in the central nervous system. The present study was undertaken to study the localization of S14 and S28 receptors in the rat brain determined by "in vitro" radioautography. The study performed on slide mounted frozen brain section with iodinated S14 and S28 analogs revealed an identical distribution of binding sites for the two forms of somatostatin. A good correlation could be observed between receptor distribution and immunohistologically localized neuropeptides except for striatum and hypothalamus. However, receptors were not detectable in the hypothalamus and were found in low concentration in the caudate-putamen nucleus, two regions containing high amounts of S28 and S14, suggesting a high occupancy of receptors in these areas by endogenous peptides or an inverse correlation between receptor and peptide concentrations.  相似文献   

17.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

18.
Neuronal cells in primary culture from 1-day-old brains of normotensive, Wistar-Kyoto strain (WKY) and spontaneously hypertensive (SH) rats have been utilized to study the expression of alpha 1-adrenergic receptors. Binding of a selective alpha 1 antagonist, [125I]2-[beta-(4-hydroxy-3-iodophenyl)-ethylaminomethyl]-tetralone ([125I]HEAT) to neuronal membranes prepared from primary brain cultures of WKY and SH rats was 75-80% specific, rapid, and time-dependent although the binding was 1.5-2 times higher in neuronal membranes from SH rat brain cultures. Kinetic analysis of the association and dissociation data demonstrated no significant differences between rat strains. Competition-inhibition experiments provided IC50 values for various antagonists and agonists in the following order: prazosin less than phentolamine less than yohimbine less than phenylephrine less than norepinephrine less than propranolol, suggesting that [125I]HEAT bound selectively to alpha 1-adrenergic receptors. Scatchard analysis of the binding data provided straight lines for both strains of rats, indicating the presence of a homogeneous population of binding sites. It also showed that the increase in the binding in neuronal cells from SH rat brains over those from normotensive WKY controls was a result of an increase in the number of alpha 1-adrenergic receptors. Incubation of neuronal cultures from both strains of rats with phenylephrine, an alpha 1-adrenergic agonist, caused a time- and dose-dependent decrease in the binding of [125I]HEAT. This decrease was due to a decrease in the number of alpha 1-adrenergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cholinergic muscarinic receptors in aged and young rat brains were studied by quantitative autoradiography of tritiated quinuclidinyl benzilate. A selective pattern of decreased binding density was observed in the aged rat. A large number of regions showed no effect of aging; these include subdivisions of the hippocampal formation and most thalamic and hypothalamic nuclei. Small but significant decreases were found in cortical regions and in the striatum. The largest effects were seen in ventral forebrain cholinergic nuclei, where 40-60% depletions were found in the diagonal band, nucleus basalis magnocellularis, ventral pallidum, and substantia innominata.  相似文献   

20.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号