首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The model polychlorinated dibenzo-p-dioxins (PCDDs) 2,7-dichloro-, 2,3,7-trichloro, 1,2,6,7-, 1,2,8,9-, and 1,3,6,8-tetrachlorodibenzo-p-dioxin were used as substrates for a degradation experiment with the white-rot fungus Phlebia lindtneri. 2,7-Dichlorodibenzo-p-dioxin (2,7-diCDD) was biotransformed to hydroxylated diCDD and methoxylated diCDD. With the exception of 1,3,6,8-tetrachlorodibenzo-p-dioxin, the tri- and tetrachlorodibenzo-p-dioxins were biotransformed to hydroxyl and methoxyl compounds by P. lindtneri. The degradation rate of 1,2,6,7-tetrachlorodibenzo-p-dioxin was higher than that of 2,3,7-trichlorodibenzo-p-dioxin and no degradation of 1,3,6,8-tetrachlorodibenzo-p-dioxin was observed. These results indicate that the degradation of these PCDDs depends on the chlorination patterns of the substrates. This is the first report of the hydroxylation and methoxylation of tri- to tetra-CDDs by a fungal strain.  相似文献   

2.
Toxic coplanar polychlorinated biphenyls (Co-PCBs) were used as substrates for a degradation experiment with white-rot fungus, Phlebia brevispora TMIC33929, which is capable of degrading polychlorinated dibenzo-p-dioxins. Eleven PCB congener mixtures (7 mono-ortho- and 4 non-ortho-PCBs) were added to the cultures of P. brevispora and monitored by high resolution gas chromatography and mass spectrometry (HRGC/HRMS). Five PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl, 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, 3,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl were degraded by P. brevispora. To investigate the fungal metabolism of PCB, each Co-PCB was treated separately by P. brevispora and the metabolites were analyzed by gas chromatography and mass spectrometry (GC/MS) and identified on the basis of the GC/MS comparison with the authentic compound. Meta-methoxylated metabolite was detected from the culture containing each compound. Additionally, para-dechlorinated and -methoxylated metabolite was also detected from the culture with 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl, which are mono-ortho-PCBs. In this paper, we identified the congener specific degradation of coplanar PCBs by P. brevispora, and clearly proved for the first time by identifying the metabolites that the white-rot fungus, P. brevispora, transformed recalcitrant coplanar PCBs.  相似文献   

3.
The ligninolytic fungus Phlebia radiata growing in a low-nitrogen medium with Avicel cellulose as the sole carbon source produced a full spectrum of celluloytic enzymes. Some properties of these enzymes were investigated during the growth of the fungal culture.  相似文献   

4.
Cells of the white rot fungus Pycnoporus cinnabarinus grown in glucose were able to hydroxylate biphenyl and diphenyl ether, although growth was inhibited by these substrates at concentrations above 250 microM. 2- and 4-Hydroxybiphenyl were detected as products of biphenyl metabolism and 2- and 4-hydroxydiphenyl ether as products of diphenyl ether metabolism in the culture media. After addition of 2-hydroxydiphenyl ether and 2-hydroxybiphenyl to cell-free supernatants containing laccase as the only ligninolytic enzyme, different coloured precipitates were formed. HPLC analysis revealed the formation of additional hydrophobic metabolites with one major product per transformation. Mass spectrometric analysis of the methyl derivatives of the polymer mixture indicated dimers and trimers with different binding types. The main products were identified as dimers with carbon-carbon bonds in para-position to the hydroxyl group of the monomers by mass spectroscopy and nuclear magnetic resonance spectroscopy.  相似文献   

5.
Marine bacterial strains (BP-PH, CAR-SF, and DBF-MAK) were isolated using biphenyl, carbazole (CAR), or dibenzofuran (DF) respectively as substrates for growth. Their 16S ribosomal DNA sequences showed that the species closest to strain BP-PH, strain CAR-SF, and strain DBF-MAK are Alteromonas macleodii (96.3% identity), Neptunomonas naphthovorans (93.1% identity), and Cycloclasticus pugetii (97.3% identity), respectively. The metabolites produced suggested that strain CAR-SF degrades CAR via dioxygenation in the angular position and by the meta-cleavage pathway, and that strain DBF-MAK degrades DF via both lateral and angular dioxygenation. Polychlorinated biphenyl (KC-300) and 2,3-dichlorodibenzo-p-dioxin were partially degraded by strain BP-PH and strain DBF-MAK, while 2,7-dichlorodibenzo-p-dioxin and 2,4,8-trichlorodibenzofuran remained virtually unchanged.  相似文献   

6.
The oxidative degradation of syringic acid by the extracellular peroxidase ofPleurotus ostreatus was studied. Three products formed in the oxidation of syringic acid by the peroxidase in the presence of O2 and H2O2 were identified as 2,6-dimethoxyphenol, 2,6-dimethoxy-1,4-dihydroxybenzene, and 2,6-dimethoxy-1,4-benzoquinone. A free radical was detected as the reaction intermediate of the extracellular peroxidase-catalyzed oxidation of acetosyringone. These results can be explained by mechanisms involving the production of a phenoxy radical and subsequent decarboxylation. This is the first time that 2,6-dimethoxyphenol has been identified in extracellular peroxidase-catalyzed reactions.  相似文献   

7.
Applied Microbiology and Biotechnology - The strain Phlebia tremellosa SBUG 1630 isolated from a thatched roof in Northern Germany is capable of colonizing and degrading effectively the water reed...  相似文献   

8.
The nucleotide sequence of a cDNA coding for a lignin peroxidase (Lgp) of the white-rot fungus, Phlebia radiata, has been determined. By amino acid (aa) sequencing, it has been shown that the protein product of this gene is the LIII Lgp of Pb. radiata. The isolated gene and the putative aa sequence are about 60% homologous to published Lgp sequences from the fungus, Phanerochaete chrysosporium. The aa thought to be involved in the catalysis of LIII are revealed by comparison with the yeast cytochrome c peroxidase. The P. radiata Lgp-encoding gene (lgp3) was expressed in the fungus, Trichoderma reesei, under the cellobiohydrolase-encoding cbh1 gene promoter. Lgp3 mRNA was produced by the T. reesei transformants. No Lgp protein, however, could be detected.  相似文献   

9.
Veratric acids 14C-labelled in carboxyl group, 3-OCH3, 4-OCH3, or aromatic ring together with unlabelled veratric acid were supplemented in the cultures of the white-rot fungus Phlebia radiata. The effect of various carbon sources on the release of 14CO2 was studied. Veratric acid was readily decarboxylated, maximally already on day 1 from the addition of [14COOH]-veratric acid. High amounts (4%) of glucose slightly repressed the decarboxylation. In medium supplemented with cellulose the methoxyl group in position 4 was much more readily mineralized to CO2 than the group in position 3. The maximum evolution was achieved on day 5, two days from the addition. Cellulose did not repress methanol oxidation but repression of methanol oxidation by glucose was detected in media supplemented with [O14CH3]-veratric acids and 14CH3OH. However, glucose did not repress oxidation of H14CHO. The apparent uptake of 14C by fungal mycelium, especially from methoxyl groups, but also from the aromatic ring, may partially be due to the strong slime formation observed in cellobiose medium. Also in cellobiose medium apparent uptake of 14C from 14C-labelled methoxyl groups was observed.  相似文献   

10.
Radiolabeled [14C]arabinoxylan from wheat meal and [14C]galactoglucomannan from red clover meal were prepared by using 14CO2 as a precursor. Twice as much mannan was mineralized than xylan after 14 days of incubation with Phlebia radiata. Low-molecular-weight phenolic compounds structurally related to lignin increased during mineralization of both hemicellulose fractions. Veratryl alcohol increased degradation of arabinoxylan by approximately 28.5%, whereas veratric acid increased it by only 9.0%. Vanillic acid and ferulic acid also stimulated degradation by 16.6% and 34.7%, respectively. Veratryl alcohol and ferulic acid increased degradation of galactoglucomannan by approximately 75%. Veratraldehyde in both cases repressed the degradation process (23.6% arabinoxylan, 43.8% galactoglucomannan). These results indicate that the degradation of hemicelluloses, e.g., xylan and mannan, by P. radiata is enhanced by addition of aromatic compounds. Journal of Industrial Microbiology & Biotechnology (2002) 28, 168–172 DOI: 10.1038/sj/jim/7000221 Received 25 July 2001/ Accepted in revised form 23 October 2001  相似文献   

11.
Phlebia radiatatransformed 2,4,6-trinitrotoluene (TNT), as well as its first reduction products, the aminodinitrotoluenes, into 4-hydroxylamino-2,6-dinitrotoluene (4-OHA-2,6-DNT) and 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT). No extracellular peroxidases were involved in this step. The ligninolytic extracellular fluid, assumed to contain peroxidases, did not reduce TNT. However, ligninolytic peroxidases are implicated in the transformation of the first reduction products of TNT.  相似文献   

12.
As a discarded lignocellulosic biomass, chestnut shell is of great potential economic value, thus a sustainable strategy is needed and valuable for utilization of this resource. Herein, the feasibility of biological processes of chestnut shell with Dichomitus squalens, Phlebia radiata and their co-cultivation for lignin-modifying enzymes (LMEs) production and biodegradation of this lignocellulosic biomass was investigated under submerged cultivation. The treatment with D. squalens alone at 12 days gained the highest laccase activity (9.42 ± 0.73 U mg?1). Combined with the data of laccase and manganese peroxidase, oxalate and H2O2 were found to participate in chestnut shell degradation, accompanied by a rapid consumption of reducing sugar. Furthermore, specific surface area of chestnut shell was increased by 77.6–114.1 % with the selected fungi, and total pore volume was improved by 90.2 % with D. squalens. Meanwhile, the surface morphology was observably modified by this fungus. Overall, D. squalens was considered as a suitable fungus for degradation of chestnut shell and laccase production. The presence of LMEs, H2O2 and oxalate provided more understanding for decomposition of chestnut shell by the white-rot fungi.  相似文献   

13.
The ligninolytic fungus Phlebia radiata growing in a low-nitrogen medium with wheat bran as the sole carbon source was induced by some lignin monomers, e.g. vanillic, veratric and ferulic acids. In the medium these substances showed a mainly stimulating influence on the hemicellulolytic enzymes activity except for arabinofuranosidase and ferulic acid esterase.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAH) are persistent priority pollutants of soil and sediments. The use of white-rot fungi has been proposed as a means of bioremediating PAH-polluted sites. However, higher PAH compounds of low bioavailability in polluted soil are biodegraded slowly. In order to enhance their bioavailability, PAH solubilization, can be increased in water/solvent mixtures. The oxidation of a model PAH compound, anthracene, in the presence of cosolvents by the white-rot fungus, Bjerkandera sp. strain BOS55 was investigated. Acetone and ethanol at 5% were toxic to this fungus when added at the time of inoculation. However, when solvents up to 20% (v/v) were added to 9-day-old cultures, ligninolytic activity as indicated by Poly R-478 dye decolorization and anthracene oxidation was evident for several days. Since 20% solvent was toxic to cells, the oxidation of anthracene can be attributed to extracellular peroxidases, which were shown to tolerate the solvent. Solvent additions of 11%–21% (v/v) acetone or ethanol increased the rate of anthracene bioconversion to anthraquinone in liquid medium by a factor of 2–3 compared to fungal cultures receiving 1%–3% solvent.  相似文献   

15.
Vanillic acid metabolism was studied in wild-type Sporotrichum pulverulentum and three different mutants. Vanillic acid was found to be oxidatively decarboxylated to methoxyhydroquinone (MHQ) and simultaneously reduced to vanillin and vanillyl alcohol to different degrees depending upon the cultivation conditions. The reducing pathway cannot be utilized unless the fungus has access to an easily metabolized carbon source such as glucose or cellobiose, while decarboxylation takes place in cultures with only vanillic acid present. Polymerization reactions also occurred in the culture solutions. Some evidence for reoxidation of vanillin and vanillyl alcohol was obtained in vivo, and in vitro experiments using horseradish peroxidase.Using vanillic acids labelled in the carboxyl, methoxyl and the aromatic ring it was shown that decarboxylation occures before ring-cleavage, which in turn takes place earlier than the release of 14CO2 from O14CH3-vanillate. The 14CO2 evolution from the methoxyl group is repressed by 1% cellobiose as compared to 0.25% cellobiose, but is stimulated by 26 mM nitrogen (as asparagine plus NH4NO3) compared to 2.6 mM nitrogen. Since S. pulverulentum appears to require three hydroxyl groups attached to the benzene ring before ring-cleavage can occur, preparation for ring-cleavage is apparently achieved by hydroxylation rather than by demethylation.A scheme for metabolism of vanillic acid by S. pulverulentum based upon these results is proposed.Non-Standard Abbreviations WT wild type Sporotrichum pulverulentum - MHQ methoxyhydroquinone - MQ methoxyquinone - NKM Norkrans medium - DMS dimethylsuccinate - DHP dehydropolymer of coniferyl alcohol  相似文献   

16.
17.
Ferulic acid metabolism was studied in wild-type Sporotrichum pulverulentum and its phenoloxidase-less mutant, Phe 3. High levels of reduced products which included coniferyl aldehyde, dihydroferulic acid and dihydroconiferyl alcohol were detected in culture filtrates. Small amounts of vanillic acid and methoxyhydroquinone were also found. In addition, products which possessed a methylated p-hydroxyl group were identified by mass spectrometry. The phenoloxidase-less mutant gave essentially the same reduced products as the wildtype. These persisted for longer periods in the culture medium. Three fungi known to produce large amounts of phenoloxidases exhibited a markedly different pattern of ferulic acid depletion.Abbreviations BSTFA N,O-bis-(Trimethylsilyl)trifluoroacetamide - Phe 3 phenoloxidase-less mutant  相似文献   

18.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

19.
The Remazol Brilliant Blue R (RBBR) decolorising peroxidase of Pleurotus ostreatus decolorised several recalcitrant dyes. Eight different types of dyes, including triphenyl methane, heterocyclic, azo, and polymeric dyes, were decolorised to some extent. The best decolorisation was obtained for Bromophenol blue (98%). The enzyme oxidised triphenyl methane and azo dyes effectively. However, heterocyclic dyes, Methylene Blue and Toluidine Blue O were decolorised only by 10%. © Rapid Science Ltd. 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号