首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A mixture of NADPH and ferrodoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. 2. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine: xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. 3. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. 4. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

2.
The interaction of superoxide ion and ascorbate anion with anthracycline antibiotics (adriamycin and aclacinimycin A) as well as with their Fe3+ complexes has been studied in aprotic and protic media. It was found that both superoxide and ascorbate reduce anthracyclines to deoxyaglycons via a one-electron transfer mechanism under all conditions studied. The reaction of ascorbate anion with adriamycin and aclacinomycin A in aqueous solution proceeded only in the presence of Fe3+ ions; it is supposed that an active catalytic species was Fe3+ adriamycin. It is also supposed that the reduction of anthracycline antibiotics by O,7 and ascorbate in cells may increase their anticancer effect.  相似文献   

3.
《Free radical research》2013,47(1-5):141-150
The interaction of superoxide ion and ascorbate anion with anthracycline antibiotics (adriamycin and aclacinimycin A) as well as with their Fe3+ complexes has been studied in aprotic and protic media. It was found that both superoxide and ascorbate reduce anthracyclines to deoxyaglycons via a one-electron transfer mechanism under all conditions studied. The reaction of ascorbate anion with adriamycin and aclacinomycin A in aqueous solution proceeded only in the presence of Fe3+ ions; it is supposed that an active catalytic species was Fe3+ adriamycin. It is also supposed that the reduction of anthracycline antibiotics by O,7 and ascorbate in cells may increase their anticancer effect.  相似文献   

4.
To clarify the mechanism of the cardiotoxic action of adriamycin (ADM), the participation of free radicals from ADM in cardiotoxicity was investigated through the protective action of glutathione (GSH) or by using electron spin resonance (ESR). Oxidation of ADM by horseradish peroxidase and H2O2 (HRP-H2O2) was blocked by GSH concentration dependently. Inactivation of creatine kinase (CK) induced during interaction of ADM with HRP-H2O2 was also protected by GSH. Other anthracycline antitumor drugs that have a p-hydroquinone structure in the B ring also inactivated CK, and GSH inhibited the inactivation of CK. These results suggest that ADM was activated through oxidation of the p-hydroquinone in the B ring by HRP-H2O2. Although ESR signals of the oxidative ADM B ring semiquinone were not detected, glutathionyl radicals were formed during the interaction of ADM with HRP-H2O2 in the presence of GSH. ADM may be oxidized to the ADM B ring semiquinone and then reacts with the SH group. However, ESR signals of ADM C ring semiquinone, which was reductively formed by xanthine oxidase (XO) and hypoxanthine (HX) under anaerobic conditions, were not diminished by GSH, but they completely disappeared with ferric ion. These results indicate that oxidative ADM B ring semiquinones oxidized the SH group in CK, but reductive ADM C ring semiquinone radicals may participate in the oxidation of lipids or DNA and not of the SH group.  相似文献   

5.
The superoxide free radical has been spin trapped in microsomal incubations containing adriamycin, daunorubicin, and mitomycin C. The time sequence of the appearance of the spin-trapped superoxide and the semiquinone radical metabolite of these quinone-containing anticancer drugs indicates that air oxidation of the semiquinone is responsible for the superoxide formation. Superoxide dismutase prevents the formation of the superoxide spin adducts. Microsomal incubations containing anthracyclines intercalated in DNA produce much less superoxide than incubations free of DNA. The first unambiguous ESR evidence for the semiquinone metabolite of mitomycin C in a biological system is also presented.  相似文献   

6.
A mixture of NADPH and ferredoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine:xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

7.
Direct and spin-trapping electron spin resonance methods have been used to study the reactivity of semiquinone radicals from the anthracycline antibiotics daunorubicin and adriamycin towards peroxides (hydrogen peroxide, t-butyl hydroperoxide and cumene hydroperoxide). Semiquinone radicals were generated by one-electron reduction of anthracyclines, using xanthine/xanthine oxidase. It is shown that the semiquinones are effective reducing agents for all the peroxides. From spin-trapping experiments it is inferred that the radical product is either OH (from H2O2) or an alkoxyl radical (from the hydroperoxides) which undergoes beta-scission to give the methyl radical. The rate constant for reaction of semiquinone with H2O2 is estimated to be approx. 10(4)-10(5) M-1 X s-1. The reduction does not appear to require catalysis by metal ions.  相似文献   

8.
Superoxide oxidizes epinephrine to a semiquinone, initiating a series of reactions leading to the colored product adrenochrome. This popular assay for superoxide is more sensitive at higher pH, and it does not work if dopamine is used instead of epinephrine. A kinetic analysis shows that these effects can be explained by competing reactions that lower the yield of the observed product. The catecholamine quinone may cyclize to form the absorbing product, or it may be reduced back to the semiquinone by superoxide. For epinephrine, the quinone cyclizes quickly and adrenochrome formation dominates, but for dopamine, the quinone cyclizes slowly and the back reaction prevails. The yield of adrenochrome increases if the epinephrine semiquinone reacts with O2 to form more superoxide, but this reaction competes with disproportionation of the semiquinone. Because disproportionation slows as pH increases, both superoxide formation and the yield of adrenochrome increase at higher pH.  相似文献   

9.
Probucol, a lipid-lowering drug, has been shown to offer protection against adriamycin-induced cardiomyopathy. In order to define the mechanism of this protection, we examined changes in antioxidants and lipid peroxidation in hearts as well as lipids in hearts and plasma from rats treated with either adriamycin or adriamycin and probucol with appropriate controls. Any potential free radical quenching as well as growth inhibitory effects of probucol were also examined using Chinese hamster ovary (CHO) cells in culture. In animal model, adriamycin caused a significant depression in glutathione peroxidase and increased plasma and cardiac lipids as well as lipid peroxidation. Probucol treatment modulated adriamycin-induced cardiomyopathic changes and increased glutathione peroxidase and superoxide dismutase activities. In the presence of adriamycin under hypoxic conditions, formation of adriamycin semiquinone radical was detected by ESR. The cell growth in these cultures was also inhibited by adriamycin in a dose-dependent manner. Probucol had no effect on adriamycin-induced growth inhibition as well as formation of semiquinone radicals. It is proposed that probucol protection against adriamycin cardiomyopathy is mediated by increased antioxidants and lipid-lowering without any effect on free radical production.  相似文献   

10.
The photooxidation of the dimers of nicotinamide adenine dinucleotide, (NAD)2, is catalyzed by adriamycin under aerobic conditions. (NAD)2 and O2 react in 1:1 molar ratio to yield 2 mol of NAD+. Experiments carried out by irradiating at 340 and 485 nm, corresponding to the absorption maxima of (NAD)2 and adriamycin, respectively, clearly indicate that the process is primed by photoexcitation of adriamycin. The key step of the process is the redox reaction between (NAD)2 and adriamycin with formation of the semiquinone radical anion, identified by the EPR spectrum. The semiquinone is then oxidized back to adriamycin by oxygen with formation of the superoxide radical.  相似文献   

11.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

12.
《Free radical research》2013,47(3-6):143-148
Iron plays a central role in oxidative injury, reportedly because it catalyzes superoxide- and hydrogen peroxide-dependent reactions yielding a powerful oxidant such as the hydroxyl radical. Iron is also thought to mediate the cardiotoxic and antitumour effects of adriamycin and related compounds. NADPH-supplemented microsomes reduce adriamycin to a semiquinone radical, which in turn re-oxidizes in the presence of oxygen to form superoxide and hence hydrogen peroxide. During this redox cycling membrane-bound nonheme iron undergoes superoxide dismutase- and catalase-insensitive reductive release. Membrane iron mobilization triggers lipid peroxidation, which is markedly enhanced by simultaneous addition of superoxide dismutase and catalase. The results indicate that : i) lipid peroxidation is mediated by the release of iron, yet the two reactions are governed by different mechanisms; and ii) oxygen radicals are not involved in or may actually inhibit adriamycin-induced lipid peroxidation. Microsomal iron delocalization and lipid peroxidation might represent oxyradical-independent mechanisms of adriamycin toxicity.  相似文献   

13.
To clarify the mechanism of the cardiotoxic action of adriamycin (ADM), the participation of free radicals from ADM in cardiotoxicity was investigated through the protective action of glutathione (GSH) or by using electron spin resonance (ESR). Oxidation of ADM by horseradish peroxidase and H2O2 (HRP-H2O2) was blocked by GSH concentration dependently. Inactivation of creatine kinase (CK) induced during interaction of ADM with HRP-H2O2 was also protected by GSH. Other anthracycline antitumor drugs that have a p-hydroquinone structure in the B ring also inactivated CK, and GSH inhibited the inactivation of CK. These results suggest that ADM was activated through oxidation of the p-hydroquinone in the B ring by HRP-H2O2. Although ESR signals of the oxidative ADM B ring semiquinone were not detected, glutathionyl radicals were formed during the interaction of ADM with HRP-H2O2 in the presence of GSH. ADM may be oxidized to the ADM B ring semiquinone and then reacts with the SH group. However, ESR signals of ADM C ring semiquinone, which was reductively formed by xanthine oxidase (XO) and hypoxanthine (HX) under anaerobic conditions, were not diminished by GSH, but they completely disappeared with ferric ion. These results indicate that oxidative ADM B ring semiquinones oxidized the SH group in CK, but reductive ADM C ring semiquinone radicals may participate in the oxidation of lipids or DNA and not of the SH group.  相似文献   

14.
Adriamycin (doxorubicin), an anticancer agent, stimulated the formation of superoxide in submitochondrial particles isolated from bovine heart. Superoxide formation was detected by oxygen uptake, by the cooxidation of epinephrine to adrenochrome and by the reduction of acetylated cytochrome c. These processes were sensitive to superoxide dismutase (SOD). Rotenone-insensitive oxidation of NADH by the mitochondrial respiratory chain in the presence of oxygen caused the formation of approx 4 nmol of superoxide per min/mg of protein. Adriamycin at a concentration of 400 micron stimulated the rate of superoxide formation 6-fold to 25 nmol.min-1.mg-1, but this was not a maximum rate. Approximately 50 micron adriamycin was estimated to be sufficient for obtaining one-half maximal stimulation. Hydrogen peroxide accumulated as a final reaction product. Measurements of the relative catalase activity of blood-free tissues of rabbits and rats indicated that heart contained 2 to 4% of the catalase activity of liver or kidney. An enhanced production of superoxide and hydrogen peroxide and the relatively low catalase content of heart tissue may be factors in the cardiotoxicity induced by adriamycin chemotherapy if a similar reaction occurs in vivo.  相似文献   

15.
Experiments were conducted to determine which free radicals are generated during the metabolism of adriamycin (ADM) by canine tracheal epithelial (CTE) cells, guinea pig enterocytes, and rat hepatocytes. The technique employed in this study was spin trapping; the spin trap utilized was 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). The spin adduct 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OH) was observed during the metabolism of ADM by CTE cells. However, the addition of dimethyl sulfoxide to the in vitro system suggested that superoxide is initially spin trapped by the nitrone, and that the adduct 2-hydroperoxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OOH) is rapidly bioreduced to afford DMPO-OH. The addition of superoxide dismutase to the system indicated that superoxide generation was primarily intracellular. The adriamycin semiquinone free radical (ADM-SQ) was produced during the metabolism by enterocytes and hepatocytes. The rate of the production of ADM-SQ was enhanced under anaerobic conditions, suggesting that molecular oxygen was responsible for the degradation of this carbon-centered free radical. However, spin trapping of oxygen radicals was not observed; this observation suggests that these reactive intermediates are not produced at concentrations sufficient for detection by spin-trapping experiments.  相似文献   

16.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

17.
The formation of semiquinone free radicals from antitumor drugs has been studied by pulse radiolysis. The semiquinone free radicals are reactive and have short half-lives in aqueous media under anaerobic conditions. The half-lives of the radicals formed from adriamycin, mitomycin C, and 2,5-diaziridinyl-3,6-bis(carboethoxy)amine-1,4-benzoquinone (AZQ) are 50,100, and 200 μs, respectively. The mean diffusion distance of the semiquinone free radical is less than 0.6 μm. In the presence of molecular oxygen the half-life of the semiquinone free radical is shortened. Adriamycin semiquinone reacts rapidly with oxygen, k = 4.4 × 107m?1s?1. In air-saturated buffer the half-life of adriamycin semiquinone radical can be calculated to be 8 μs with a mean diffusion distance of less than 0.1 μm. If the half-lives in buffer are comparable to those within a cell, semiquinone free radicals must be generated close to the site at which they produce a biological effect. One-electron reduction potentials (E71) were determined and were AZQ, ?168 mV, adrenochrome, ?253 mV, mitomycin C, ?271 mV, adriamycin, ?292 mV, daunomycin, ?305 mV, and anthracenedione, ?348 mV. Enzymatic one-electron reduction of these antitumor quinones by NADPH-cytochrome P-450 reductase increased at more positive values of quinone E71.  相似文献   

18.
We report our finding that the reaction between the adriamycin semiquinone (produced by reduction of the drug by xanthine oxidase) and H2O2 in N2 causes deoxyribose degradation to a thiobarbituric acid-reactive chromogen. Deoxyribose breakdown was inhibited by scavengers of hydroxyl radicals, providing evidence for the participation of hydroxyl radicals. The reaction was detected in air, but was less efficient in air than in N2. Deoxyribose degradation did not require a metal catalyst, and was inhibited by superoxide dismutase in air, but not N2. A similar reaction with deoxyribose in DNA may be of major importance in the antitumour action of adriamycin.  相似文献   

19.
Pulse radiolysis of aqueous solutions containing adriamycin and redox indicators of known one-electron reduction potential (E1) shows that its E1 at pH 7 is ?328 mV (vs NHE). The variation E1 with pH in the range 6–12 shows that the net charge on the semiquinone at pH 7 is zero. As well as the pKa values of 2.9 and ≥ 14 established independently, the semiquinone has a pKa close to 9.2. The new data enable the structure and likely reactivity of the semiquinone to be specified.  相似文献   

20.
Solid pyrimidine nucleic acid bases (cytosine, thymine, and uracil) were gamma-irradiated (50 KGy) and dissolved in deaerated solutions of adriamycin in water and dimethylsulfoxide (DMSO). Analogous experiments using unirradiated pyrimidines as controls were also performed. In water only gamma-irradiated cytosine showed a reaction with the adriamycin yielding a single ESR peak (g = 2.0033) consistent with the adriamycin semiquinone radical. Since the unirradiated cytosine gave no reaction, the result suggests an electron transfer from cytosine radicals (generated by gamma-radiolysis) to adriamycin. In DMSO the three gamma-irradiated and unirradiated pyrimidines reacted with adriamycin yielding the adriamycin semiquinone radical observed by ESR. These results suggest that in DMSO an electron is transferred to adriamycin from the pyrimidine radicals and from the parent pyrimidine molecules. However, the process is on the order of 10(5) times more efficient for the pyrimidine radicals. Superoxide radicals (O2-.) were formed following addition of oxygen to the deaerated DMSO solutions containing adriamycin semiquinone radicals. O2-. was spin trapped using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results show a possible reaction sequence in which an electron transferred to adriamycin, by pyrimidine radicals and parent pyrimidine molecules, is subsequently transferred to dissolved oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号