首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Recent data support the possible role of nitric oxide (NO?) in the development of insulin signalling. The aim of this study was to examine the effect of insulin on NO? production by platelets. The chemiluminescence of platelet-rich plasma prepared from the blood of healthy volunteers was measured in the presence of luminol. Indirect detection of NO? by luminol is possible in the form of peroxynitrite produced in the reaction of NO? with a superoxide free radical. Luminol oxidation induced by hydroxyl free radical and lipid peroxidation was prevented by 150 µmol/l of desferrioxamine mesylate. Insulin, in the range of 0.084–840 nmol/l, induced a concentration-dependent increase in chemiluminescence, which was inhibited both by the competitive antagonist of the NO? synthase enzyme, Nω-nitro-L-arginine methyl ester (at concentrations of 2.0–4.0 mmol/l, P <0.001), and by the elimination of superoxide free radicals using superoxide dismutase (72–144 IU/ml, P <0.001). In conclusion, we assume that the insulin-induced increase in chemiluminescence of platelet-rich plasma was due to increased production of NO? and superoxide free radicals forming peroxynitrite. The data are consistent with production of peroxynitrite from human platelets under insulin stimulation.  相似文献   

2.
Soluble guanylyl cyclase (sGC) is a key enzyme of the *NO/cGMP pathway. Many cardiovascular disorders are associated with reduced *NO-mediated effects, while vascular superoxide (O(2)*(-)) production is increased. Both radicals rapidly react to peroxynitrite. We investigated whether peroxynitrite affects the activity and protein expression of sGC in intact vascular preparations. Catalytic sGC activity and expression of the sGC-beta(1) subunit was measured by conversion of radiolabeled GTP and western blot, respectively, using cytosolic extracts from rat aorta that had been incubated for 4 h with *NO/O(2)*(-) systems (devoid of free *NO) generating either 0.13 microM or 7.5 microM peroxynitrite/min. Incubation of rat aorta with 0.13 microM peroxynitrite/min had no effect. In striking contrast, incubation with 7.5 microM peroxynitrite/min resulted in a shift of the concentration-response curve obtained with a *NO donor (p =.0004) and a reduction of maximal specific activity from 3579 +/- 495 to 2422 +/- 265 pmol cGMP/mg/min (p =.036). The expression of the sGC-beta(1) subunit was unchanged. Exposure of aorta to the O(2)*(-) component had no effect, while exposure to the *NO-component reduced sGC expression to 58.8 +/- 7% (p <.001) and maximal sGC activity from 4041 +/- 992 to 1429 +/- 491 pmol cGMP/mg/min (p =.031). These data suggest that continuous generation of extracellular peroxynitrite might interfere with the *NO/cGMP signaling in vascular cells.  相似文献   

3.
In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10-100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.  相似文献   

4.
In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10–100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.  相似文献   

5.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

6.

Background

The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.

Results

Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.

Conclusions

These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite.  相似文献   

7.
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 μmol/l ascorbic acid, 0.23 μmol/l (+)catechin, and 3 μmol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.  相似文献   

8.
Human recombinant MnSOD and CuZnSOD were both inactivated when exposed to simultaneous fluxes of superoxide (JO(2)(*-)) and nitric oxide (J*NO). The inactivation was also observed with varying J*NO/JO(2)(*-) ratios. Protein-derived radicals were detected in both CuZn and MnSOD by immuno-spin trapping. The formation of protein radicals was followed by tyrosine nitration in the case of MnSOD. When MnSOD was exposed to J*NO and JO(2)(*-) in the presence of uric acid, a scavenger of peroxynitrite-derived free radicals, nitration was decreased but inactivation was not prevented. On the other hand, glutathione, known to react with both peroxynitrite and nitrogen dioxide, totally protected MnSOD from inactivation and nitration on addition of authentic peroxynitrite but, notably, it was only partially inhibitory in the presence of the more biologically relevant J*NO and JO(2)(*-). The data are consistent with the direct reaction of peroxynitrite with the Mn center and a metal-catalyzed nitration of Tyr-34 in MnSOD. In this context, we propose that inactivation is also occurring through a *NO-dependent nitration mechanism. Our results help to rationalize MnSOD tyrosine nitration observed in inflammatory conditions in vivo in the presence of low molecular weight scavengers such as glutathione that otherwise would completely consume nitrogen dioxide and prevent nitration reactions.  相似文献   

9.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

10.
The inhibition of platelet aggregation by peroxynitrite, a reactive oxygen species derived from the interaction of nitric oxide (NO) and superoxide, was examined in platelet-rich plasma. In this report, we have used a preparation of peroxynitrite that was free of H202 and MnO2. As such, peroxynitrite dose-dependently (50–200 μA) inhibited aggregation of human platelets stimulated by ADP (5 μM), collagen (0.5 μg), thrombin (0.5 UlmL) and U46619 (1 PM). In addition, peroxynitrite reversed platelet aggregation induced by collagen, ADP, and thrombin. Peroxynitrite, preincubated with platelet-poor plasma or albumin (7%) for 30 min, did not alter the inhibition of platelet aggregation. This suggested that the inhibitory action of peroxynitrite may be due to nitrosylation of proteins, which by themselves possess activity, rather than conversion to NO or NO donors. Furthermore, we show that peroxynitrite increased the cGMP level only at 200 μM concentrations, further suggesting that the action of peroxynitrite was not completely due to its conversion to NO or NO donors.  相似文献   

11.
Resveratrol (3,4',5-trihydroxystilbene), a compound found in many plants, has been shown to prevent coronary heart diseases and to exert a variety of antiinflammatory and anticancerogenic effects. It is effective in lowering the level of serum lipids and in inhibiting platelet aggregation. We evaluated the effect of trans-resveratrol on the production of free radicals in pig blood platelets and showed that resveratrol inhibited the production of different reactive oxygen species (O2*-, H2O2, singlet oxygen and organic radicals) measured by the luminol-dependent chemiluminescence in resting platelets (P < 0.05). Resveratrol inhibited also the generation of radicals in platelets activated by thrombin (P < 0.05). Treatment of platelets with resveratrol at concentrations of 6.25 and 12.5 microg/ml caused a statistically insignificant increase in the production of O2*- in these cells, as measured by reduction of cytochrome c; however, at higher doses (25, 50 and 100 microg/ml) resveratrol distinctly reduced the generation of O2*- in platelets (P < 0.05). We suggest that free radicals play an important role in the reduced reactivity of blood platelets induced by resveratrol.  相似文献   

12.
Oxidative stress is characterized by excessive production of various free radicals and reactive species among which, peroxynitrite is most frequently produced in several pathological conditions. Peroxynitrite is the product of the superoxide anion reaction with nitric oxide, which is reported to take place in the intravascular compartment. Several studies have reported that peroxynitrite targets red blood cells, platelets and plasma proteins, and induces various forms of oxidative damage. This in vitro study was designed to further characterize the types of oxidative damage induced in platelets and plasma proteins by peroxynitrite. This study also determined the ability of tempol to protect blood plasma and platelets against peroxynitrite-induced oxidative damage. The ability of various concentrations of tempol (25, 50, 75, and 100 µM) to antagonize peroxynitrite-induced oxidation was evaluated by measuring the levels of protein carbonyl groups and thiobarbituric-acid-reactive substances in experimental groups. Exposure of platelets and plasma to 100 µM peroxynitrite resulted in an increased levels of carbonyl groups and lipid peroxidation (P < 0.05). Tempol significantly inhibited carbonyl group formation in plasma and platelet proteins (P < 0.05). In addition, tempol significantly reduced the levels of lipid peroxidation in both plasma and platelet samples (P < 0.05). Thus, tempol has antioxidative properties against peroxynitrite-induced oxidative damage in blood plasma and platelets.  相似文献   

13.
Production and the mechanism of the interactions of free radicals generated by stimulated macrophages in the presence of luminol and a free radical inhibitor was investigated to determine the possibility of using luminol-dependent chemiluminescence for studying photodynamic effects in biology. Earlier measurements have been revisited and additional experiments performed indicating that oxidation products of luminol neither inhibit the in vitro formation of radicals nor quench CL. Simulation based on the mechanism suggested revealed that the likely value for the rate constant of the primary step between luminol and superoxide anion radicals producing luminol radicals is 5x10(2)-1x10(3) M-1s-1. It has been established that the ratio of the concentration of radicals generated by the biological system to that formed by oxidation of luminol exceeds 10(3); that is, the contribution of the latter is negligible and the system is appropriate to measure quantitatively the effect of excited photosensitizers on free radicals.  相似文献   

14.
Free radicals have been implicated in the etiology of cardiac dysfunction during sepsis, but the actual species responsible remains unclear. We studied the alterations in myocardial nitric oxide (NO), superoxide, and peroxynitrite generation along with cardiac mechanical function and efficiency in hearts from lipopolysaccharide (LPS)-treated rats. Six hours after LPS (4 mg/kg ip) or saline (control) treatment, hearts were isolated and perfused for 1 h with recirculating Krebs-Henseleit buffer and paced at 300 beats/min. Cardiac work, O(2) consumption, and cardiac efficiency were markedly depressed in LPS hearts compared with controls. Plasma nitrate/nitrite level was elevated in LPS rats, and ventricular NO production was enhanced as measured by electron spin resonance spectroscopy, Ca(2+)-independent NO synthase (NOS) activity, and inducible NOS immunohistochemistry. Ventricular superoxide production was also enhanced in LPS-treated hearts as seen by lucigenin chemiluminescence and xanthine oxidase activity. Increased nitrotyrosine staining (immunohistochemistry) and higher lipid hydroperoxides levels were also detected in LPS-treated hearts, indicating oxygen radical-induced stress. Enhanced generation of both NO and superoxide, and thus peroxynitrite, occur in dysfunctional hearts from endotoxemic rats.  相似文献   

15.
巨噬细胞产生NO.和O_2~-自由基的分子机理   总被引:2,自引:0,他引:2  
建立了用顺磁共振(ESR)和化学发光技术测定巨噬细胞产生NO和氧自由基的方法.捕捉到了巨噬细胞受佛波酯刺激产生的NO.和O-2自由基.测定了在不同浓度L-精氨酸存在时佛波酯刺激后巨噬细胞产生的NO自由基.研究了巨噬细胞产生的NO和氧自由基的分子机理.结果表明巨噬细胞不仅产生氧自由基而且产生NO自由基.NADPH氧化酶产生氧自由基的部位位于巨噬细胞膜的外侧.NO合成酶活化产生NO自由基比NADPH氧化酶活化产生氧自由基晚几分钟.  相似文献   

16.
Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.  相似文献   

17.
Atherosclerosis is one of the most common diseases and the principal cause of death in western civilization. The pathogenesis of this disease can be explained on the basis of the 'oxidative-modification hypothesis,' which proposes that low-density lipoprotein (LDL) oxidation represents a key early event. Nitric oxide (*NO) regulates critical lipid membrane and lipoprotein oxidation events by a) contributing to the formation of more potent secondary oxidants from superoxide (i.e.: peroxynitrite), and b) its antioxidant properties through termination reactions with lipid radicals to possibly less reactive secondary nitrogen-containing products (LONO, LOONO). Relative rates of production and steady state concentrations of superoxide and *NO and cellular sites of production will profoundly influence the expression of differential oxidant injury-enhancing and protective effects of *NO. Full understanding of the physiological roles of *NO, coupled with detailed insight into *NO regulation of oxygen radical-dependent reactions, will yield a more rational basis for intervention strategies directed toward oxidant-dependent atherogenic processes.  相似文献   

18.
This study is based on a simple chemical interaction of peroxynitrite (ON O O) and luminol, which produces blue light upon oxidation. Since peroxynitrite has a half-life of about 1 s, a drug known as linsidomine (SIN-1) is used as a peroxynitrite generator. Peroxynitrite can oxidize lipids, proteins and nucleic acids. Upon the stimulation of inflammation and/or infection, macrophages and neutrophils can be induced to produce large amounts of peroxynitrite, which can oxidize phenols and sulphhydryl-containing compounds. Therefore, phenols and sulphhydryls eliminate peroxynitrite. This is an example of the Yin–Yang hypothesis e.g. oxidation–reduction. Acetaminophen (Tylenol®) can inhibit fever and some types of pain without being a particularly effective anti-inflammatory. Since it is a phenol, it could act as a nitration target for peroxynitrite. Then peroxynitrite, the possible cause of pain and elevated temperature, might be destroyed in the reaction. Acetaminophen is a phenolic compound which produces a clear inhibitory dose–response curve with peroxynitrite in its range of clinical effectiveness. Whether acetaminophen actually works as we suggest is to be proven. Three different types of reaction could decrease the amount of peroxynitrite: (a) interference with base-catalysed opening of the SIN-1 molecule; (b) destruction of one or both substances needed to form it— superoxide and/or nitric oxide; when the SIN-1 degrades to superoxide and nitric oxide, the former may be destroyed by superoxide dismutase (SOD); (c) peroxynitrite may react directly with phenols (mono-, di-, tri- and tetraphenols), possibly by nitration. Nordihydroguaiaretic acid and 2-hydroxyestradiol (catechol estrogen) are potent inhibitors of luminol light emission. Epineprine, isoproterenol, pyrogallol, catechol and ascorbic acid (a classic antioxidant) are all inhibitors of luminol chemiluminescence. Isoproterenol, norepinephrine/and epinephrine first inhibit light but overall stimulate the light production. Initially, SIN-1 degrades to produce peroxynitrite, which reacts with luminol to produce blue light. If any of three catecholamines are present with the reaction that produces light, there is an initial inhibition of light production, and then a marked stimulation. A possible reason for this is that these catechols are oxidized and the metabolized phenol stimulates the production of light from luminol. Also, during oxidation of catecholamines superoxide is sometimes formed, which could stimulate production of peroxynitrite. This simple screening system is introduced to find useful antioxidants against peroxynitrite. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The oxidation of free coelenterazine by superoxide anion was analyzed and compared to the oxidation by the semisynthetic photoprotein obelin, prepared by incorporation of synthetic coelenterazine into apoobelin. The oxidation of bound coelenterazine was triggered upon binding of calcium to the reconstituted photoprotein. The oxidation of free synthetic coelenterazine, in the absence of the apoprotein, was triggered by superoxide anion. The production of reactive oxygen metabolites by fMet-Leu-Phe- and 4b-phorbol 12b-myristate 13a-acetate-stimulated neutrophils was studied by means of the luminescence of synthetic coelenterazine. The features of this chemiluminescent probe were compared with those of luminol and are summarized as follows: (a) coelenterazine-dependent chemiluminescence was inhibited by superoxide dismutase; (b) coelenterazine was as sensitive as luminol in detecting the oxidative burst of neutrophils; (c) azide failed to inhibit coelenterazine chemiluminescence; (d) in contrast with luminol, which requires the catalytic removal of hydrogen peroxide, coelenterazine chemiluminescence did not depend on the activity of cell-derived myeloperoxidase. These results indicate the usefulness of coelenterazine as a very sensitive and specific chemiluminescence probe of superoxide anion.  相似文献   

20.
《Luminescence》2003,18(5):249-253
We established a peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide (CS2). Three factors, including exposure time to ozone (Factor A), volume of peroxynitrite (ONOO?) solution (Factor B) and luminol concentrations (Factor C) at three levels were selected and the combinations were in accordance with orthogonal design L9 (34). Peroxynitrite was generated from the reaction of ozone and 0.01 mol/L sodium azide (NaN3) dissolved in carbonic acid buffer solution (pH 11), and it was reacted with luminol to yield chemiluminescence. The peak value, peak time and kinetic curve of the light emission were observed. The selected combination conditions were 50 s ozone, 800 µL peroxynitrite and 0.001 mol/L luminol solution. Cell culture solution with CS2 enhanced the emission intensity of chemiluminescence (F = 8.38, p = 0.018) and shortened the peak time to chemiluminescence (F = 139.00, p = 0.0001). The data demonstrated that this luminol chemiluminescence system is suitable for detecting peroxynitrite in cell culture solutions for evaluating the effect of CS2 on endothelial cells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号