首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

2.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

3.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

4.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

5.
We studied the effect of glycine supplementation on lipid peroxidation and antioxidants in the erythrocyte membrane, plasma and hepatocytes of rats with alcohol-induced hepatotoxicity. Administering ethanol (20%) for 60 days to male Wistar rats resulted in significantly elevated levels of erythrocyte membrane, plasma and hepatocyte thiobarbituric acid reactive substances (TBARS) as compared with those of the experimental control rats. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) were also observed on alcohol supplementation as compared with those of the experimental control rats. Glycine was administered at a dose of 0.6 g kg(-1) body weight to rats with alcohol-induced liver injury, which significantly decreased the levels of TBARS and significantly elevated the activities of SOD, CAT, GSH, GPx and GR in the erythrocyte membrane, plasma and hepatocytes as compared to that of untreated alcohol supplemented rats. Thus, our data indicate that supplementation with glycine offers protection against free radical-mediated oxidative stress in the erythrocyte membrane, plasma and hepatocytes of animals with alcohol-induced liver injury.  相似文献   

6.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

7.
镉对长江华溪蟹肝胰腺抗氧化酶活力的影响   总被引:9,自引:0,他引:9  
闫博  王兰  李涌泉  刘娜  王茜 《动物学报》2007,53(6):1121-1128
重金属对环境的污染已成为全球面临的首要问题之一,其中镉(Cd2 )是一种广泛存在的毒性污染物,能通过消化道和呼吸道进入生物体,对机体造成损伤(Zyadah and Abdel-Baky,2000)。研究表明,Cd2 可以通过Ca2 通道穿过细胞膜进入机体(Roesijadi and Robinson,1994),诱导产生大量自由基和活性氧(ROS),从而形成氧胁迫(Toppi andGabbrielli,1994;Hegedus et al.,2001)。ROS可以与体内脂质、蛋白质和核酸反应,导致脂质过氧化、细胞膜损伤并且影响多种酶的活力,对生物体造成威胁。由于在水生生态系统中生物富集污染物的作用明显,故相对于陆地生…  相似文献   

8.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

9.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

10.
To shed light on the association of lipid peroxidation and antioxidant status with the development of aberrant crypt foci (ACF), we studied the modulatory influence of resveratrol, supplemented in three dietary regimens (initiation, post-initiation and entire period) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Rats were administered DMH (20 mg/kg body weight, s.c.) for 15 weeks and were supplemented with resveratrol (8 mg/kg body weight, p.o. everyday) in three dietary regimens. Intestines and colons were analyzed for the levels of diene conjugates (DC), lipid hydroperoxides (LOOHs) and thiobarbituric acid reactive substances (TBARS). Enzymic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione S-transferase, GST; and glutathione reductase, GR) and non-enzymic reserve (reduced glutathione, GSH; ascorbate; and alpha-tocopherol) were also assessed in the intestine and colon. Unsupplemented DMH exposed rats showed significantly decreased levels/activities of tissue DC, LOOHs, TBARS, SOD, CAT, GSH, GR and significantly elevated (P<0.05) GPX, GST, alpha-tocopherol and ascorbate as compared to control rats. Resveratrol supplementation during the entire period of the study resulted in significant (P<0.01) modulation of lipid peroxidation markers and antioxidants status, which were paralleled with ACF suppression, as compared to DMH-alone treated rats. These results indicate that resveratrol effectively inhibits DMH-induced ACF and colonic tumor development.  相似文献   

11.
The metabolism of ethanol gives rise to the generation of excess amounts of reactive oxygen species and is also associated with immune dysfunction. We examined the efficacy of resveratrol and vitamin E on the immunomodulatory activity and vascular function in mice with liver abnormalities induced by chronic ethanol consumption by measuring the protein, liver-specific transaminase enzymes, antioxidant enzymes and non-enzymes such as reduced glutathione (GSH) content, thiobarbituric acid reactive substance (TBARS) level, nitrite level, and activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx) and glutathione-S-transferase (GST), and cytokines such as interleukin (IL)-2, IL-4, IL-10, tumor necrosis factor (TNF)-alpha, gamma interferon (IFN-gamma), vascular endothelial growth factor (VEGF)-A and transforming growth factor (TGF)-beta1 in mice blood. Ethanol (1.6 g/kg body wt/day) exposure for 12 wks significantly increased TBARS and nitrite levels and GST activity, and significantly decreased GSH content and the activities of SOD, CAT, GR and GPx in whole blood hemolyzate of 8-10 wks-old male BALB/c mice (weighing 20-30 g). Ethanol exposure also elevated the activities of transaminase enzymes (AST and ALT), IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1, while decreasing the albumin concentration and IL-4 activity in the serum. Both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) treatment significantly reduced AST, ALT, GST, IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1 activities and levels of TBARS and nitrite, and elevated albumin content, GSH level and activities of SOD, CAT, GR and GPx, compared to ethanol-treated group. Thus, results from the study demonstrated that both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) can effectively ameliorate ethanol (1.6 g kg(-1) day(-1))-induced oxidative challenges, immunomodulatory activity and angiogenesis processes.  相似文献   

12.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

13.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

14.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

15.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

16.
Hydrogen sulfide (H2S) is a signal molecule that is involved in plant growth, development and the acquisition of stress tolerance including heat tolerance, but the mechanism of H2S-induced heat tolerance is not completely clear. In present study, the effect of sodium hydrosulfide (NaHS), a H2S donor, treatment on heat tolerance of maize seedlings in relation to antioxidant system was investigated. The results showed that NaHS treatment improved survival percentage of maize seedlings under heat stress in a concentration-dependent manner, indicating that H2S treatment could improve heat tolerance of maize seedlings. To further study mechanism of NaHS-induced heat tolerance, catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) activities, and glutathione (GSH) and ascorbic acid (AsA) contents in maize seedlings were determined. The results showed that NaHS treatment increased the activities of CAT, GPX, SOD and GR, and GSH and AsA contents as well as the ratio of reduced antioxidants to total antioxidants [AsA/(AsA+DHA) and GSH/(GSH +GSSG)] in maize seedlings under normal culture conditions compared with the control. Under heat stress, antioxidant enzymes activities, antioxidants contents and the ratio of the reduced antioxidants to total antioxidants in control and treated seedlings all decreased, but NaHS-treated seedlings maintained higher antioxidant enzymes activities and antioxidants levels as well as the ratio of reduced antioxidants to total antioxidants. All of above-mentioned results suggested that NaHS treatment could improve heat tolerance of maize seedlings, and the acquisition of this heat tolerance may be relation to enhanced antioxidant system activity.  相似文献   

17.
Succinic acid monoethyl ester (EMS) was recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study the effect of EMS and metformin on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin-nicotinamide induced type 2 diabeteic model was investigated. Succinic acid monoethyl ester was administered intraperitonially for 30 days to control and diabetic rats. The effect of EMS on glucose, insulin, hemoglobin, glycosylated hemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (Gpx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The effect of EMS was compared with metformin, a reference drug. The levels of glucose, glycosylated hemoglobin, TBARS, hyderoperoxide, and vitamin E were increased significantly whereas the level of insulin and hemoglobin, as well as antioxidants (SOD, CAT, Gpx, GST, vitamin C and GSH) membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in streptozotocin-nicotinamide diabetic rats. Administration of EMS to diabetic rats showed a decrease in the levels of glucose, glycosylated hemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, hemoglobin, enzymic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in EMS and metformin treated diabetic rats. The present study indicates that the EMS possesses a significant beneficial effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect.  相似文献   

18.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

19.
The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.  相似文献   

20.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号