共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An extensive research project is described, during which resentment and hostility were aroused due to the data gathering methods. Those effects disturbed the smooth running of the project and led to subjects withdrawing from some experiments. Although the entire project had many positive features, those that are reported here detracted from its complete success. The negative features should be heeded by others who wish to improve the quality of their experimental work with human beings, otherwise the unintended stress of experimentation might restrict subject participation and disrupt data collection. 相似文献
3.
Judy Weleminsky 《BMJ (Clinical research ed.)》1988,297(6642):199-200
4.
5.
6.
7.
Krohs U 《Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences》2012,43(1):52-57
Systems biology aims at explaining life processes by means of detailed models of molecular networks, mainly on the whole-cell scale. The whole cell perspective distinguishes the new field of systems biology from earlier approaches within molecular cell biology. The shift was made possible by the high throughput methods that were developed for gathering 'omic' (genomic, proteomic, etc.) data. These new techniques are made commercially available as semi-automatic analytic equipment, ready-made analytic kits and probe arrays. There is a whole industry of supplies for what may be called convenience experimentation. My paper inquires some epistemic consequences of strong reliance on convenience experimentation in systems biology. In times when experimentation was automated to a lesser degree, modeling and in part even experimentation could be understood fairly well as either being driven by hypotheses, and thus proceed by the testing of hypothesis, or as being performed in an exploratory mode, intended to sharpen concepts or initially vague phenomena. In systems biology, the situation is dramatically different. Data collection became so easy (though not cheap) that experimentation is, to a high degree, driven by convenience equipment, and model building is driven by the vast amount of data that is produced by convenience experimentation. This results in a shift in the mode of science. The paper shows that convenience driven science is not primarily hypothesis-testing, nor is it in an exploratory mode. It rather proceeds in a gathering mode. This shift demands another shift in the mode of evaluation, which now becomes an exploratory endeavor, in response to the superabundance of gathered data. 相似文献
8.
9.
10.
11.
12.
Denis F Hawkins 《BMJ (Clinical research ed.)》1988,296(6617):291-292
13.
14.
15.
J. A. Ott 《Helgoland Marine Research》1973,24(1-4):54-77
Summary 1. Recent advances in underwater research are reviewed and critically discussed. New technologies include deep-sea diving apparatus, saturation diving from underwater habitats, submersibles and remote-controlled vehicles. The fields of application include increasingly ecology and animal behaviour.2. The term underwater experimentation is defined and examples provided to illustrate pertinent research.3. Underwater experimentation is compared to laboratory experimentation. The latter is restricted to a limited set of suitable organisms, which are subjected to controlled but frequently quite artificial conditions. Furthermore, only systems of a very low degree of complexity can be studied in the laboratory. Underwater experimentation is limited by the restricted performance of man under in situ conditions. Automatisation of experimental units and use of remote-controlled vehicles are proposed to enhance man's underwater capacity.4. The need for the design of underwater experiments, especially for system analysis, is emphasized. There is an increasing demand for predictive models to anticipate the potential impacts of civilisation on the marine environment.
Konzepte der Unterwasser-Experimentation
Kurzfassung In den letzten zehn Jahren sind Unterwasseruntersuchungen zu einem nicht mehr wegzudenkenden und wichtigen Bestandteil marinbiologischer Forschungen geworden. Die technische Entwicklung dieser methodologisch definierten Disziplin führte vom Schwimm- und Gerätetauchen zu Tauchbooten, Unterwasserhäusern und ferngesteuerten Fahrzeugen. Die Anwendungsbereiche umfassen Beobachtung und Aufsammlung bis zur genauen Messung und Probennahme für ökologische Untersuchungen. Echte experimentelle Arbeit wird jedoch noch immer fast ausschließlich im Laboratorium durchgeführt. Daher ist Experimentation noch immer auf eine begrenzte Auswahl an haltbaren Organismen, eine begrenzte Zahl simulierbarer und kontrollierbarer Faktoren und insbesonders an einen begrenzten Komplexitätsgrad der Untersuchungsobjekte gebunden. Dies ist um so bedauerlicher, als sich in der Ökologie immer deutlicher die Notwendigkeit von Systemanalysen abzeichnet. Der gegenwärtige Standard in Unterwasserbeobachtung und Datengewinnung und die Entwicklung von Multivariatentechniken macht es möglich, die kontrollierten Bedingungen im Laboratorium — die zu oft eine gefährliche Vereinfachung sind — durch die gemessenen Bedingungen in situ zu ersetzen. Die Dringlichkeit experimenteller Arbeit an ökologischen Systemen kann nicht genug betont werden in einer Zeit, in der wir versuchen müssen, mit den Einflüssen unserer Zivilisation auf die natürlichen Lebensräume fertigzuwerden, Voraussagen treffen und Modelle entwickeln zu können.相似文献
16.
17.
18.
19.
20.