首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low density lipoprotein was oxidized by neutrophils derived from either C57BL/6 mice or myeloperoxidase (MPO)-knockout mice. The generation of superoxide from neutrophils of MPO-knockout mice was about 70% of that from wild-type mice. The extent of the oxidation of human low density lipoprotein (LDL) by phorbol myristate acetate (PMA)-activated neutrophils of wild-type and MPO-knockout mice was assessed by measuring consumption of a-tocopherol and formation of phosphatidylcholine hydroperoxide (PCOOH) and cholesteryl ester hydroperoxide (CEOOH). Little consumption of a-tocopherol was observed in both oxidations. It was found, however, that lipid hydroperoxides were accumulated with time in both oxidations and that the rates of formation of PCOOH and CEOOH in the oxidation by MPO-knockout neutrophils were about 66 and 44% of those by wild-type neutrophils, respectively. The lipid peroxidation was completely inhibited by adding superoxide dismutase (SOD) in both cases. The addition of L-tyrosine and SOD enhanced lipid peroxidation of LDL induced by wild-type neutrophils but not by MPO-knockout ones. These results suggest that, regardless of their MPO activity, neutrophils induce lipid peroxidation of LDL by a superoxide-dependent pathway, and that MPO-catalyzed lipid peroxidation is enhanced by the presence of an appropriate amount of free tyrosine and further enhanced by SOD.  相似文献   

2.
Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.  相似文献   

3.
Oxidative modification of LDL may be important in the initiation and/or progression of atherosclerosis, but the precise mechanisms through which low density lipoprotein (LDL) is oxidized are unknown. Recently, evidence for the existence of HOCl-oxidized LDL in human atherosclerotic lesions has been reported, and myeloperoxidase (MPO), which is thought to act through production of HOCl, has been identified in human atherosclerotic lesions. In the present report we describe the formation of 2,4-dinitrophenylhydrazine (DNPH)-reactive modifications in the apolipoprotein (apo) by exposure of LDL to myeloperoxidase in vitro. In contrast with the complex mixture of peptides from oxidation of LDL with reagent HOCl, oxidation with MPO in vitro produced a major tryptic peptide showing absorbance at 365 nm. This peptide was isolated and characterized as VELEVPQL(*C)SFILK..., corresponding to amino acid residues 53-66...on apoB-100. Mass spectrometric analyses of two tryptic peptides from oxidation of LDL by HOCl indicated formation of the corresponding methionine sulfoxide (M=O), cysteinyl azo (*C), RS -N= N-DNP, derivatives of EEL(*C)T(M=O)FIR and LNDLNS VLV(M=O)PTFHVPFTDLQVPS(*C)K, which suggest oxidation to the corresponding sulfinic acids (RSO2H) by HOCl.The present results demonstrate that DNPH-reactive modifications other than aldehydes and ketones can be formed in the oxidation of proteins and illustrate how characterization of specific products of protein oxidation can be useful in assessing the relative contributions of different and unexpected mechanisms to the oxidation of LDL and other target substrates. The data also suggest a direct interaction of the LDL particle with the active site on myeloperoxidase and indicate that effects of the protein microenvironment can greatly influence product formation and stability.  相似文献   

4.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

5.
In this study, the production of the highly toxic oxidant hypochlorous acid (HOCl) by the phagocytic enzyme myeloperoxidase (MPO) was quantitated and the concomitant alterations of low density lipoprotein (LDL) were analyzed in view of the potential role of LDL in atherosclerosis. Using the monochlorodimedone assay, it was found that HOCl is produced in micromolar concentrations. The kinetics of the decrease of tryptophan fluorescence appeared to be a sensitive method to monitor LDL alterations under near in vivo conditions. Therefore, this method was used to subsequently compare the effectiveness of MPO inhibitors that block production of HOCl with compounds that act as HOCl traps. The efficiency of MPO inhibitors to prevent LDL damage increased in the series benzohydroxamic acid < salicylhydroxamic acid < 3-amino-1,2,4-triazole < sodium azide < potassium cyanide < p-hydroxy-benzoic acid hydrazide, while for the HOCl traps the protective efficiency increased in the series glycine < taurine < methionine. We conclude that HOCl traps may have high potential therapeutic impact in vivo due to their low toxicity, although high concentrations of them would have to reach sites of inflammation. In contrast, only low concentrations of a specific MPO inhibitor would be required to irreversibly inhibit the enzyme.  相似文献   

6.
This is the first observation for contributing to the glycation of low density lipoprotein (LDL) to oxidative modification of its own lipids and protein. Human plasma LDL was glycated by incubation with glucose (G-LDL). Glucose incorporated into apoprotein B was approximately 10 mol/mol of apoprotein (2.8% modification of lysine residues) and 84% of G-LDL was adsorbed on phenylboronate affinity column. G-LDL incubated with Fe3+ for 4 h caused a significantly higher level of lipid peroxidation than U-LDL (untreated with glucose), and a higher molecular weight protein was observed in apoprotein B on SDS-polyacrylamide gel electrophoresis (SDS-PAGE), increasing with incubation period. Corresponding to change on SDS-PAGE, G-LDL exposed to Fe3+ moved faster than G-LDL per se or U-LDL to anode on agarose gel electrophoresis. The higher the Fe3+ concentration, the more lipid peroxidation was caused. Alpha-tocopherol or probucol suppressed the lipid peroxidation of G-LDL exposed to Fe3+.  相似文献   

7.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4', 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4', 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

8.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4′, 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4′, 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

9.
Low density lipoprotein (LDL) can be oxidatively modified by cultured endothelial cells or by cupric ions, resulting in increased macrophage uptake of the lipoprotein. This process could be relevant to the formation of macrophage-derived foam cells in the early atherosclerotic lesion. The mechanism of endothelial cell modification of LDL is unknown. In the present work we show that incubation of LDL with purified soybean lipoxygenase, in the presence of pure phospholipase A2, can mimic endothelial cell-induced oxidative modification. Typically, incubation with lipoxygenase plus phospholipase A2 caused: 1) generation of about 15 nmol of thiobarbituric acid-reactive substances per mg of LDL protein; 2) a 4- to 7-fold increase in the rate of subsequent macrophage degradation of the LDL; 3) a 10-fold decrease in recognition by fibroblasts; 4) a marked increase in electrophoretic mobility in agarose gels; and, 5) disappearance of intact apoprotein B on SDS polyacrylamide gels. Degradation of the enzymatically modified LDL by macrophages was competitively inhibited by endothelial cell-modified LDL and by polyinosinic acid, but only partially suppressed by acetylated LDL. The lipoxygenase plus phospholipase A2-induced modification of LDL is not necessarily identical to endothelial cell modification, but it is a useful model for studying the mechanism of oxidative modification of LDL. This work also represents the first example of oxidative modification of LDL by specific enzymes leading to enhanced recognition by macrophages.  相似文献   

10.
Using monoclonal antibodies against apolipoprotein B (apoB) we studied changes in apoB immunoreactivity during copper ion-mediated oxidation of human low density lipoprotein (LDL). The radioimmunoassay experiments demonstrated the decrease of immunoreactivity of three different epitopes of apoB located in different parts of the protein; at the same time the immunoreactivity of another epitope, previously mapped to the C-terminal 20 amino acids of apoB increased markedly during the first 6 h of LDL oxidation and diminished gradually upon prolonged incubation with copper ions. The fate of LDL during oxidation was also monitored using electrophoretic techniques combined with immunodetection. These experiments showed a rapid fragmentation and disappearance of immunoreactive apoB. They also indicated that the diminishing LDL immunoreactivity detectable during oxidation is associated with apoB fragments still attached to the lipid core. The changes in apoB immunoreactivity during Cu2+ treatment of LDL are similar to those observed upon LDL aging. Therefore, it appears that the enhancement of immunoreactivity of the C-terminus of apoB is a general phenomenon associated with various kinds of oxidative modifications of LDL.  相似文献   

11.
We have previously reported that the spin trap alpha-phenyl-tert-butyl nitrone (PBN) inhibited the oxidative modification of low density lipoprotein (LDL) (Kalyanaraman, B., Antholine, W.E. and Parthasarathy, S. (1990) Biochim. Biophys. Acta 1035, 286-292). In the present study, we report that 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS), a water-soluble spin trap, also inhibited the oxidation of LDL as measured by the formation of thiobarbituric acid reactive substances (TBARS). However, when compared with LDL incubated without DBNBS, the DBNBS-incubated LDL showed increased negative charge on agarose gel electrophoresis and was avidly degraded by mouse peritoneal macrophages. Despite the suggestion of biological modification, there was no decrease in lysine-amino groups in DBNBS-incubated LDL. Furthermore, reductively methylated LDL in which more than 85% of the amino group of lysines was blocked, was also modified by DBNBS. A sulfonic acid analog of PBN failed to modify LDL in a similar manner, suggesting that the presence of sulfonic acid alone does not ensure modification. When LDL was incubated with DBNBS, radical adducts associated with both lipid and protein were detected by electron paramagnetic resonance (EPR) technique. It is suggested that DBNBS may bind to the apoprotein B100 and lipids of LDL by a lysine-independent mechanism resulting in increased recognition and degradation by macrophages. The present work offers a novel approach for rapid modification of LDL.  相似文献   

12.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

13.
14.
Summary A rapid method for determining soil fungal populations is described. A 25-g equivalent of oven-dry soil, in 225 ml of water in a 500-ml aspirator bottle, is agitated on a magnetic stirrer and samples withdrawn with a syringe while the suspension is in motion. Individual drops are placed in petri dishes and mixed with a suitable culture medium. The average weight of soil per drop is determined and colony counts related to dry weight of soil as usual. This syringe method is simple, eliminates much of the error common in serial dilution and pipetting, and allows for a high degree of reproducibility and possible standardization.  相似文献   

15.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

16.
It has recently been shown that macrophage proliferation occurs during the progression of atherosclerotic lesions and that oxidized low density lipoprotein (LDL) stimulates macrophage growth. Possible mechanisms for this include the interaction of oxidized LDL with integral plasma membrane proteins coupled to signaling pathways, the release of growth factors and autocrine activation of growth factor receptors, or the potentiation of mitogenic signal transduction by a component of oxidized LDL after internalization. The present study was undertaken to further elucidate the mechanisms involved in the growth-stimulating effect of oxidized LDL in macrophages. Only extensively oxidized LDL caused significant growth stimulation, whereas mildly oxidized LDL, native LDL, and acetyl LDL were ineffective. LDL that had been methylated before oxidation (to block lysine derivatization by oxidation products and thereby prevent the formation of a scavenger receptor ligand) did not promote growth, even though extensive lipid peroxidation had occurred. The growth stimulation could not be attributed to lysophosphatidylcholine (lyso-PC) because incubation of oxidized LDL with fatty acid-free bovine serum albumin resulted in a 97% decrease in lyso-PC content but only a 20% decrease in mitogenic activity. Similarly, treatment of acetyl LDL with phospholipase A2 converted more than 90% of the initial content of phosphatidylcholine (PC) to lyso-PC, but the phospholipase A2-treated acetyl LDL was nearly 10-fold less potent than oxidized LDL at stimulating growth. Platelet-activating factor receptor antagonists partly inhibited growth stimulation by oxidized LDL, but platelet-activating factor itself did not induce growth. Digestion of oxidized LDL with phospholipase A2 resulted in the hydrolysis of PC and oxidized PC but did not attenuate growth induction. Native LDL, treated with autoxidized arachidonic acid under conditions that caused extensive modification of lysine residues by lipid peroxidation products but did not result in oxidation of LDL lipids, was equal to oxidized LDL in potency at stimulating macrophage growth. Albumin modified by arachidonic acid peroxidation products also stimulated growth, demonstrating that LDL lipids are not essential for this effect. These findings suggest that oxidatively modified apolipoprotein B is the main growth-stimulating component of oxidized LDL, but that oxidized phospholipids may play a secondary role.  相似文献   

17.
18.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

19.
20.
Oxidative modification of low-density lipoprotein (LDL) is a pivotal process in early atherogenesis and can be brought about by myeloperoxidase (MPO), which is capable of reacting with nitrite, a NO metabolite. We studied MPO-mediated formation of conjugated dienes in isolated human LDL in dependence on the concentrations of nitrite and chloride. This reaction was strongly stimulated by low concentrations (5-50 microM) of nitrite which corresponds to the reported concentration in the arterial vessel wall. Under these conditions no protein tyrosine nitration occurred; this reaction required much higher nitrite concentrations (100 microM-1 mM). Chloride neither supported lipid peroxidation alone nor was its presence mandatory for the effect of nitrite. We propose a prominent role of lipid peroxidation for the proatherogenic action of the MPO/nitrite system, whereas peroxynitrite may be competent for protein tyrosine nitration of LDL. Monomeric and oligomeric flavan-3-ols present in cocoa products effectively counteracted, at micromolar concentrations, the MPO/nitrite-mediated lipid peroxidation of LDL. Flavan-3-ols also suppressed protein tyrosine nitration induced by MPO/nitrite or peroxynitrite as well as Cu2+-mediated lipid peroxidation of LDL. This multi-site protection by (-)-epicatechin or other flavan-3-ols against proatherogenic modification of LDL may contribute to the purported beneficial effects of dietary flavan-3-ols for the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号