首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemoattractant receptors on phagocytic leukocytes utilize a guanine nucleotide regulatory (N) protein to activate phospholipase C and subsequent biological responses. Since pertussis toxin inhibits activation of leukocytes by chemoattractants and ribosylates a ca. 40 kD protein in these cells it had generally been assumed that chemoattractant receptors are coupled to Ni. We now report that human polymorphonuclear leukocytes (PMNs), monocytes, and the myeloid HL-60 and U937 cell lines, but not erythrocytes or bovine brain contain a ca. 40 kD protein which is a substrate for ADP ribosylation by choleratoxin (CT). This N protein, termed Nc for chemotaxis-related N protein, comigrates with the ca. 40 kD PT substrate during one-dimensional gel electrophoresis. In vivo treatment of PMNs with PT or CT reduced high affinity binding of chemoattractants to membrane preparations from the cells, implying that chemoattractant receptors are coupled to an N protein which is a substrate for both PT and CT. We suggest that Nc rather than Ni couples chemoattractant receptors to phospholipase C.  相似文献   

2.
Leukocyte activation by chemoattractants provides an important model to study the biochemical mechanisms of stimulus-response coupling in these cells. Well-defined chemotactic factors induce readily quantifiable responses in phagocytic leukocytes. These include directed migration and the production and release of toxic substances including oxygen radicals and lysosomal enzymes. The development of radiolabeled synthetic oligopeptides with potent chemotactic activity allowed the demonstration of chemoattractant receptors on polymorphonuclear leukocytes (PMNs) as well as macrophages. In membrane preparations from these cells, these receptors exist in high- and low-affinity states which are regulated by guanosine di- and triphosphates. This suggested that chemoattractant receptors interact with guanine nucleotide regulatory proteins (N or G proteins). Although chemoattractants elicit a rapid but transient increase in intracellular cAMP levels, they neither stimulate nor inhibit membrane-bound adenylate cyclase, suggesting a novel role for N proteins in certain receptor-transduction mechanisms. Stimulation of phagocytes by chemoattractants is also associated with a rapid increase in cytosolic Ca2+ concentrations ([ Ca2+]i) which appears to result from the production of inositol 1,4,5-triphosphate (IP3) as a consequence of the diesteric cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2). Treatment of phagocytes with pertussis toxin (PT), which ADP-ribosylates and thereby inactivates certain N proteins, abolishes the cells' responsiveness to chemoattractants. More direct evidence for a role of a PT-sensitive N protein in leukocyte activation was provided by the demonstration that chemoattractants stimulate the hydrolysis of PIP2 in PMN membranes only in the presence of GTP. This receptor-mediated hydrolysis of PIP2 is not observed in plasma membranes prepared from PT-treated PMNs. Therefore, these studies suggest that occupancy of chemoattractant receptors activates a PT-sensitive N protein. The activated N protein shifts the Ca2+ requirement for phospholipase C activity from supraphysiological levels to ambient cytosolic Ca2+ concentrations. Cleavage of PIP2 results in the formation of the second messenger molecules, IP3 and 1,2-diacylglycerol, which can initiate cellular activation. These messengers also seem to activate responses which feed back to attenuate receptor stimulation of phospholipase.  相似文献   

3.
Previous studies demonstrated that oligopeptide chemoattractant receptors on PMN and macrophages exist in high and low affinity states which are interconvertible by guanosine di- and triphosphates. These observations suggest that guanine nucleotide regulatory (N) proteins play a role in phagocyte activation by chemotactic factors. The data presented here indicate that chemotactic factor receptors on monocytes utilize an N protein to activate phospholipase C and subsequent biologic responses by the cells. This conclusion is based on the findings that inactivation of an N protein of 41,000 m.w. by Bordetella pertussis toxin (PT) treatment abolishes monocyte responsiveness to chemoattractants but not to lectins, PMA, or the Ca2+ ionophore A23187. Treatment with PT inhibited IP3 production, Ca2+ mobilization, and cellular activation as assessed by chemotaxis and changes in forward light scattering in response to the chemoattractants by at least 80%. Therefore, a PT-sensitive N protein plays an important role in the activation of monocytes by chemoattractants.  相似文献   

4.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   

5.
Cross-linking of membrane immunoglobulin, the B cell receptor for antigen, activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) by phospholipase C. This reaction yields two intracellular second messengers, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes an increase in cytoplasmic Ca2+. The experiments reported here demonstrate that activation of phospholipase C by membrane IgM (mIgM) involves a guanine nucleotide-dependent step. Saponin was used to permeabilize WEHI-231 B lymphoma cells and permit direct manipulation of nucleotide and Ca2+ concentrations. Very high levels of Ca2+ (greater than 100 microM) activated the phospholipase maximally without a requirement for cross-linking of mIgM. However, at much lower, physiologically relevant Ca2+ concentrations (100 to 500 nM), receptor-stimulated PtdInsP2 hydrolysis could be demonstrated. The ability of anti-IgM antibodies to activate phospholipase C in permeabilized WEHI-231 cells was greatly increased by nonhydrolyzable guanosine 5'-triphosphate (GTP) analogues (guanosine-5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate), but not by guanosine diphosphate or guanosine diphosphate analogues or by a nonhydrolyzable analogue of adenosine triphosphate. This specificity for GTP analogues is consistent with the hypothesis that a GTP-binding regulatory protein analogous to those that couple receptors to adenylate cyclase is involved in the activation of phospholipase C by mIgM in WEHI-231 B lymphoma cells. In order to characterize this putative GTP-binding component, we examined the ability of pertussis toxin and cholera toxin to affect anti-IgM-stimulated inositol phosphate production. These bacterial toxins covalently modify and modulate the activity of various GTP-binding regulatory proteins and in some cell types can block receptor-stimulated PtdInsP2 breakdown. In WEHI-231 B lymphoma cells, neither toxin blocked signaling by mIgM. Thus mIgM appears to be coupled to the phosphoinositide signaling pathway by a GTP-dependent component that is insensitive to both pertussis toxin and cholera toxin.  相似文献   

6.
It is well established that formyl peptide chemoattractants can activate a phospholipase C in leukocytes via a pertussis toxin (PT)-sensitive guanine nucleotide regulatory (G) protein. Whether this pathway is similarly used by chemoattractant receptors as a class has been unclear. We now report that lipid and peptide chemoattractants in direct comparative studies induced similar amounts of initial (less than or equal to 15 sec) inositol trisphosphate (IP3) release in human polymorphonuclear leukocytes, but the response to lipid chemoattractants was more transient. Production of IP3 by all chemotactic factors was inhibited by treatment of the cells with PT, indicating that chemotactic factor receptors as a class are coupled to phospholipase C via a G protein that is a substrate for ADP ribosylation by PT. The peptide and lipid factors had comparable chemotactic activity, which was also inhibitable by PT. However, transient activation of phospholipase C is apparently an insufficient signal for full cellular activation, since the lipid chemotactic factor leukotriene B4 and platelet-activating factor were poor stimuli for O2- production and lysosomal enzyme secretion compared with N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe). Nonetheless, treatment with PT inhibited O2- production and enzyme secretion in response to all chemoattractants, but as previously noted, did not affect Ca2+ ionophores, lectins, or phorbol myristate acetate. Formyl peptide and lipid chemotactic factors induced similar levels of Ca2+ mobilization when monitored by Quin 2 or chlortetracycline (CTC) fluorescence. Although these responses to fMet-Leu-Phe were blocked by PT, the Quin 2 and initial CTC response to the lipid factors were only partially susceptible. Thus, the lipid factors apparently utilize an additional PT-resistant mechanism for redistributing intracellular Ca2+. This latter process requires extracellular Ca2+ and may be independent of the PT-sensitive G protein.  相似文献   

7.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

8.
Incubation of rat mast cells with compound 48/80 resulted in transient breakdown of phosphatidylinositol 4,5-bisphosphate, rapid generation of inositol polyphosphates, 45Ca inflow, and the arachidonic acid liberation mainly from phosphatidylcholine, eventually leading to histamine secretion. All of these processes of signaling from Ca-mobilizing receptors to degranulation were markedly inhibited by prior 2-h exposure of cells to islet-activating protein (IAP), pertussis toxin. A23187 caused 45Ca inflow and releases of arachidonic acid and histamine without inducing breakdown of inositol phospholipids. The effects of A23187, in contrast to those of compound 48/80, were not altered by the exposure of cells to IAP. Incubation of the supernatant fraction of mast cell homogenates with the active component of IAP caused the transfer of the ADP-ribosyl moiety of added [alpha-32P]NAD to a protein with Mr = 41,000. The IAP-catalyzed ADP-ribosylation of this protein was prevented by guanosine 5'-(3-O-thio)triphosphate, indicating that this IAP substrate resembles, in character, the alpha-subunit of the guanine nucleotide regulatory protein (Ni) involved in inhibition of adenylate cyclase. The degree of ADP-ribosylation of this IAP substrate was prevented progressively by pre-exposure of the homogenate-donor cells to increasing concentrations of IAP. The half-maximally effective concentrations of the toxin were 0.2 to 0.6 ng/ml for all the IAP-sensitive processes studied. Thus, the ADP-ribosylation of the Mr = 41,000 protein occurring during exposure of cells to IAP appears to be responsible for the inhibition of signaling observed. It is proposed that the alpha-subunit of Ni, or a like protein, mediates signal transduction arising from Ca-mobilizing receptors, probably prior to Ca2+ gating.  相似文献   

9.
Insulin stimulates a novel GTPase activity in human platelets   总被引:3,自引:0,他引:3  
Insulin stimulated the activity of a high-affinity GTPase activity in human platelet membranes some 62% over that of the basal activity. Half-maximal stimulation (Ka) was achieved with 3.1 nM insulin. The Km for GTP of the insulin-stimulated GTPase was 0.6 microM GTP. Treatment of isolated platelet membranes with cholera toxin, but not pertussis toxin, blocked insulin's ability to stimulate GTPase activity. Cholera toxin acted as a more potent inhibitor of the insulin-stimulated GTPase activity than that of the GTPase activity of the stimulatory guanine nucleotide regulatory protein, Gs, as monitored by stimulation using prostaglandin E1 (PGE1). Mixed ligand experiments showed that insulin stimulated GTPase activity in an additive fashion to GTPase activity stimulated by PGE1, due to Gs; by adrenaline (+ propranolol), due to the inhibitory guanine nucleotide regulatory protein, G1 and by vasopressin, which stimulates the putative 'Gp', a G-protein suggested to control the stimulation of inositol phospholipid metabolism. Insulin thus appears to stimulate a novel high-affinity GTPase activity in human platelet membranes. This may reflect the functioning of the putative Gins, a guanine nucleotide regulatory protein which has been suggested to mediate certain of insulin's actions on target tissues.  相似文献   

10.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

11.
Guanine nucleotide-binding regulatory proteins similar to Gs and Gi may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. In addition, fluoride and nonhydrolyzable GTP analogs activate phospholipases in a manner that can be blocked by GDP beta S. The putative guanine nucleotide-binding regulatory protein that appears to be involved in activation of phospholipase C is sensitive to pertussis toxin in some cells but not in others.  相似文献   

12.
Regulatory mechanisms of a chemoattractant receptor on leukocytes   总被引:3,自引:0,他引:3  
Chemoattractant receptors on leukocytes initiate a number of coordinated biochemical and biological processes in a strict dose-related manner. Chemotaxis-related functions occur at low doses of chemoattractants whereas the microbicidal or secretory functions (i.e., secretion of lysosomal enzymes and superoxide anion production) require 10- to 50-fold higher concentrations. The study of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes (PMNs) has permitted better understanding of the regulation of leukocyte function. The receptor in leukocyte membranes exists in two affinity states, which are in part interconvertible. Convertibility between a portion of the high- and low-affinity states is regulated by guanine nucleotides, which suggests that a nucleotide regulatory unit allosterically modifies receptor affinity and participates in its transduction mechanisms. Approximately one-third of the high-affinity receptors in PMN membranes are not subject to guanine nucleotide regulation. This fraction can be increased by agonist preincubation and could represent an intermediate form of the receptor before signal transduction and/or internalization. Pharmacological manipulation of viable PMNs demonstrates that the affinity and functional activity of the chemoattractant receptor can be altered in different directions by aliphatic alcohols and polyene antibiotics. The alcohols raise the receptors' affinity and enhance chemotaxis, but markedly depress chemoattractant-induced secretory mechanisms. In contrast, polyene antibiotics lower the receptors' affinity and depress chemotaxis, but enhance specific granule secretion. Thus, the chemoattractant receptors' transduction signals for chemotaxis and secretion are discrete and can be modified independently by pharmacological techniques. A relationship exists between the chemoattractant receptors' affinity and its ability to transduce signals for either chemotaxis or secretion.  相似文献   

13.
The affinity of the chemoattractant receptor for N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) on human polymorphonuclear leukocytes (PMNs) is regulated by guanine nucleotides, and chemoattractants stimulate increased intracellular cAMP levels in PMNs. Our data, however, indicate that this receptor does not activate membrane-bound adenylate cyclase via direct nucleotide regulatory protein (N) coupling but instead raises cAMP levels indirectly via a mechanism which appears to require Ca2+ mobilization. This conclusion is based on the following data: 1) prostaglandin E1 (PGE1) activated and alpha 2-adrenergic treatment inhibited adenylate cyclase activation in PMN plasma membranes; fMet-Leu-Phe, however, neither activated nor inhibited adenylate cyclase in these membranes; 2) depletion of extracellular Ca2+ had no effect on isoproterenol and PGE1 elicited cAMP responses in intact PMNs while peak fMet-Leu-Phe and A23187-induced responses were reduced by approximately 50 and 80%, respectively; 3) 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate, a purported Ca2+ antagonist, caused almost complete inhibition of fMet-Leu-Phe and ionophore-induced cAMP responses in intact cells but had no effect on PGE1 and isoproterenol; 4) alpha 2-adrenergic agonists inhibited PGE1 but not chemoattractant- or A23187-elicited cAMP responses in intact PMNs; and 5) pretreatment of cells with a phosphodiesterase inhibitor (isobutylmethylxanthine) greatly potentiated the PGE1 and isoproterenol cAMP responses but nearly abolished the peak fMet-Leu-Phe response. Thus, chemoattractants appear to utilize a novel mechanism to raise cAMP levels which appear to require Ca2+ mobilization and could be mediated in part through a transient inhibition of phosphodiesterases. We suggest that stimulation of PMN functions by chemoattractants may utilize an N-coupled process to generate a Ca2+ signal which could in turn raise intracellular cAMP levels indirectly and thereby provide negative regulation.  相似文献   

14.
Treatment of rabbit neutrophils with pertussis toxin, but not cholera toxin, inhibits the increases produced by formylmethionyl-leucyl-phenylalanine, leukotriene B4 and the calcium ionophore A23187 in the amounts of actin associated with the cytoskeletons. The increase in the cytoskeletal actin produced by phorbol 12-myristate, 13-acetate on the other hand is not affected by pertussis toxin. Incubation of the neutrophils with cholera toxin, unlike pertussis toxin, did not inhibit the fMet-Leu-Phe induced rise in the intracellular concentration of free calcium, and caused only a shift to the right of the dose-response curve of N-acetyl-beta-glucosaminidase release. This shift was more marked in the presence of 1-methyl-3-isobutylxanthine. In addition, the stimulated breakdown of phosphatidylinositol 4,5 bis-phosphate was inhibited by pertussis toxin. These results suggest that pertussis toxin acts at an early step in the signal transduction and does not affect the sequence of reactions initiated by the activation of the protein kinase C. Furthermore, the guanine nucleotide regulatory protein Gi, but not Gs, is closely involved in signal transduction in these cells.  相似文献   

15.
Islet activating protein (IAP), a toxin isolated from Bordetella pertussis, blocks the ability of inhibitory hormones to attenuate adenylate cyclase activity and enhances the ability of stimulatory hormones to activate the enzyme. The toxin appears to act by catalyzing the transfer of ADP ribose from NAD to a 41,000-dalton protein in target cell membranes. A protein purified from rabbit liver membranes, apparently composed of 41,000- and 35,000-dalton subunits, is shown to be a specific substrate for IAP. Cholera toxin does not ADP-ribosylate this protein. In contrast, the purified guanine nucleotide-binding regulatory component of adenylate cyclase (G/F), which is ADP-ribosylated by cholera toxin, is not covalently modified by IAP. Equilibrium binding studies and photoaffinity labeling experiments demonstrate that the 41,000-dalton subunit of the IAP substrate has a specific binding site for guanine nucleotides.  相似文献   

16.
The thrombin-stimulated GTPase activity of human platelets was additive with respect to the GTPase stimulation effected by prostaglandin E1, but not with that stimulated by adrenaline, vasopressin and platelet-activating factor (PAF). Treatment of platelet membranes with pertussis toxin partially inhibited the thrombin-stimulated GTPase, but had no effect on the vasopressin-stimulated GTPase activity, whereas cholera toxin treatment had no effect on either of these stimulated GTPase activities. Thrombin, adrenaline and PAF, but not vasopressin, inhibited the adenylate cyclase activity of isolated plasma membranes through the action of Ni only, this being inhibited by pertussis toxin. It is suggested that thrombin exerts effects through both the inhibitory guanine nucleotide regulatory protein Ni and through the putative guanine nucleotide regulatory protein, Np, involved in regulating receptor-stimulated inositol phospholipid metabolism. However, vasopressin appears to exert its effects solely through the putative Np.  相似文献   

17.
The guanine nucleotide regulatory protein component (N) of the frog erythrocyte membrane adenylate cyclase system appears to form a stable complex with the beta-adrenergic receptor (R) in the presence of agonist (H). This agonist-promoted ternary complex HRN can be solubilized with Lubrol. The guanine nucleotide regulatory protein associated with the solubilized complex can be adsorbed either to GTP-Sepharose directly or to wheat germ lectin-Sepharose via its interaction with the receptor which is a glycoprotein. Guanosine 5'-O-(3-thiotriphosphate)(GTP gamma S) can be used to elute the guanine nucleotide regulatory protein from either Sepharose derivative. The resulting N.GTP gamma S complex conveys nucleotide-dependent adenylate cyclase activity when combined with a Lubrol-solubilized extract of turkey erythrocyte membranes. The ability to observe GTP gamma S-dependent reconstitution of adenylate cyclase activity in the eluate from either resin required the formation of the HRN complex prior to solubilization. The N protein can be identified by its specific [32P]ADP ribosylation catalyzed by cholera toxin in the presence of [32P]NAD+. The existence of a stable HRN intermediate complex is supported by the observation that agonist pretreatment of frog erythrocyte membranes results in a 100% increase in the amount of 32P-labeled N protein eluted from the lectin-Sepharose in the presence of GTP gamma S compared to membranes pretreated with either antagonist or agonist plus GTP. Our results therefore provide evidence that the same guanine nucleotide-binding protein that associates with the beta-adrenergic receptor in the presence of agonist mediates adenylate cyclase activation.  相似文献   

18.
T Arima  T Segawa  Y Nomura 《Life sciences》1986,39(25):2429-2434
The influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity were investigated in rat striatal membranes. GTP promoted and inhibited the activity at 1 and 100 microM, respectively. The inhibitory effects of GTP were abolished by pretreatment of the membranes with pertussis toxin. GppNHp (guanyl-5'-y1-beta,gamma-imidodiphosphate) exerted only stimulatory effects and pertussis toxin did not affect the effects of GppNHp. GDP at 10 and 100 microM caused significant inhibition which was completely suppressed by pertussis toxin. It is suggested that guanine nucleotide regulates the affinity of as in stimulatory GTP-binding regulatory protein to either beta gamma or catalytic units of adenylate cyclase in a flip-flop manner. Inhibitory GTP-binding regulatory protein seems to play a regulatory role in inhibiting alpha s activity supplying the beta gamma heterodimer.  相似文献   

19.
A method is described for preparing a plasma-membrane fraction from hepatocytes by a rapid, gentle, Percoll fractionation procedure. Cholera toxin elicited the ribosylation of a number of proteins in these membranes, including the components of the stimulatory guanine nucleotide regulatory protein, Ns. Insulin, however, inhibited the ability of cholera toxin to ribosylate a protein of Mr 25 000. The action was decreased in membranes from cells that had been pre-treated with glucagon. Ribosylation of both the components of Ns and the Mr-25 000 species occurred in whole cells treated with cholera toxin, because membranes from such treated cells exhibited decreased labelling when incubated with [32P]NAD+ and activated cholera toxin. The labelling of proteins, including the Mr-25 000 species, with [32P]NAD+ and cholera toxin in the plasma membranes was decreased by an inhibitor of ribosylation. Azido-GTP photoaffinity labelling identified several high-affinity GTP-binding proteins, including one of Mr 25 000. Cholera toxin failed to ribosylate the Mr-25 000 protein in membranes from cells that had been pre-treated with the tumour-promoting agent 12-O-tetradecanoylphorbol 13-acetate (TPA). In membranes from such treated cells, insulin actually allowed cholera toxin to label this species. As TPA activates protein kinase C, it is possible that the Mr-25 000 protein, or a species that interacts with it, is a substrate for phosphorylation. These observations may offer an explanation for some of the perturbing effects that TPA exerts on insulin's action. It is suggested that the insulin receptor interacts with the guanine nucleotide regulatory protein system in the liver, and that the Mr-25 000 species may be a component of Nin, a specific guanine nucleotide regulatory protein that has been proposed to mediate certain of the actions of insulin on target cells [Houslay & Heyworth (1983) Trends Biochem. Sci. 8, 449-452].  相似文献   

20.
We have found in water-soluble extracts of rat liver (and RL-PR-C cloned rat hepatocytes), prepared in the absence of detergent, a factor that markedly enhances basal, isoproterenol and cholera toxin activation of adenylate cyclase of rigorously washed hepatocyte membranes, in the absence of added GTP. The factor, which has characteristics of a protein with an Mr of approx. 35000, has been fractionated from crude cytosol by gel filtration, and then further purified over 50-fold by sequential ion-exchange chromatography. The site of action of the protein appears to be at the level of the guanine nucleotide regulatory (G) protein of the plasma membrane adenylate cyclase complex, as the factor, cooperatively with GTP, also permitted cholera toxin to ADP-ribosylate (from 32P-labeled NAD) two integral membrane proteins that migrated on SDS-polyacrylamide gel electrophoresis gels with the mobilities (Mr approx. 46 000 and 48 000) generally observed for the guanine nucleotide regulator protein subunits. In this system, isoproterenol did not stimulate ADP-ribosylation, in either the presence or absence of the liver protein factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号