首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

2.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

3.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

4.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

5.
The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions.  相似文献   

6.
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl?) channels. The EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl? channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl? permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl? permeation and the mechanisms that underlie their split personality.  相似文献   

7.
Catalysis of glutamate transport across cell membranes and coupling of the concentrative transport to sodium, proton, and potassium gradients are processes fundamental to organisms in all kingdoms of life. In bacteria, glutamate transporters participate in nutrient uptake, while in eukaryotic organisms, the transporters clear glutamate from the synaptic cleft. Even though glutamate transporters are crucial to the viability of many life forms, little is known about their structure and quaternary organization. In particular, the subunit stoichiometry of these polytopic integral membrane proteins has not been unequivocally defined. Determination of the native molecular mass of membrane proteins is complicated by their lability in detergent micelles and by their association with detergent and/or lipid molecules. Here we report the purification of glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus in a monodisperse, detergent-solubilized state. Characterization of both transporters either by chemical cross-linking and mass spectrometry or by size-exclusion chromatography and in-line laser light scattering, refractive index, and ultraviolet absorption measurements shows that the transporters have a trimeric quaternary structure. Limited proteolysis further defines regions of primary structure that are exposed to aqueous solution. Together, our results define the subunit stoichiometry of high-affinity glutamate transporters from B. caldotenax and B. stearothermophilus and localize exposed and accessible elements of primary structure. Because of the close amino acid sequence relationship between bacterial and eukaryotic transporters, our results are germane to prokaryotic and eukaryotic glutamate and neutral amino acid transporters.  相似文献   

8.
The concentration of glutamate within the glutamatergic synapse is tightly regulated by the excitatory amino-acid transporters (EAATs). In addition to their primary role of clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl conductance. Several crystal structures of an archaeal EAAT homolog, GltPh, at different stages of the transport cycle have been solved. In a recent structure, an aqueous cavity located at the interface of the transport and trimerization domains has been identified. This cavity is lined by polar residues, several of which have been implicated in Cl permeation. We hypothesize that this cavity opens during the transport cycle to form the Cl channel. Residues lining this cavity in EAAT1, including Ser-366, Leu-369, Phe-373, Arg-388, Pro-392, and Thr-396, were mutated to small hydrophobic residues. Wild-type and mutant transporters were expressed in Xenopus laevis oocytes and two-electrode voltage-clamp electrophysiology, and radiolabeled substrate uptake was used to investigate function. Significant alterations in substrate-activated Cl conductance were observed for several mutant transporters. These alterations support the hypothesis that this aqueous cavity at the interface of the transport and trimerization domains is a partially formed Cl channel, which opens to form a pore through which Cl ions pass. This study enhances our understanding as to how glutamate transporters function as both amino-acid transporters and Cl channels.  相似文献   

9.
In the mammalian central nervous system, excitatory amino acid transporters (EAATs) are responsible for the clearance of glutamate after synaptic release. This energetically demanding activity is crucial for precise neuronal communication and for maintaining extracellular glutamate concentrations below neurotoxic levels. In addition to their ability to recapture glutamate from the extracellular space, EAATs exhibit a sodium- and glutamate-gated anion conductance. Here we show that substitution of a conserved positively charged residue (Arg-388, hEAAT1) in transmembrane domain 7 with a negatively charged amino acid eliminates the ability of glutamate to further activate the anion conductance. When expressed in oocytes, R388D or R388E mutants show large anion currents that display no further increase in amplitude after application of saturating concentrations of Na+ and glutamate. They also show a substantially reduced transport activity. The mutant transporters appear to exist preferentially in a sodium- and glutamate-independent constitutive open channel state that rarely transitions to complete the transport cycle. In addition, the accessibility of cytoplasmic residues to membrane-permeant modifying reagents supports the idea that this substrate-independent open state correlates with an intermediate outward facing conformation of the transporter. Our data provide additional insights into the mechanism by which substrates gate the anion conductance in EAATs and suggest that in EAAT1, Arg-388 is a critical element for the structural coupling between the substrate translocation and the gating mechanisms of the EAAT-associated anion channel.  相似文献   

10.
Huang S  Vandenberg RJ 《Biochemistry》2007,46(34):9685-9692
L-Glutamate is the predominant excitatory neurotransmitter in the brain, and its extracellular concentration is tightly controlled by the excitatory amino acid transporters (EAATs). The transport of 1 glutamate molecule is coupled to the cotransport of 3 Na+ and 1 H+ and the countertransport of 1 K+. In addition to substrate transport, the binding of glutamate and Na+ activates an anion current which is thermodynamically uncoupled from the transport process. We have identified three amino acid residues in EAAT1 (D272 in TM5, K384 and R385 in TM7) that influence the amplitude of the anion channel current relative to the transport current. Transporters containing the mutations R268A, D272A, D272K, K384A, K384D, R385A, and R385D were expressed in Xenopus laevis oocytes and their transport and anion channel functions measured using the two-electrode voltage clamp techniques. The D272, K384, and R385 mutant transporters showed no change in transport properties but have increased levels of anion channel activity compared to wild-type transporters. These results identify additional residues of the EAAT1 transporter that may contribute to the gating mechanism of the anion channel of glutamate transporters and also provide hints as to how substrate binding leads to channel activation.  相似文献   

11.

In addition to being an amino acid that is incorporated into proteins, glutamate is the most abundant neurotransmitter in the mammalian CNS, the precursor for the inhibitory neurotransmitter γ-aminobutyric acid, and one metabolic step from the tricarboxylic acid cycle intermediate α-ketoglutarate. Extracellular glutamate is cleared by a family of Na+-dependent transporters. These transporters are variably expressed by all cell types in the nervous system, but the bulk of clearance is into astrocytes. GLT-1 and GLAST (also called EAAT2 and EAAT1) mediate this activity and are extremely abundant proteins with their expression enriched in fine astrocyte processes. In this review, we will focus on three topics related to these astrocytic glutamate transporters. First, these transporters co-transport three Na+ ions and a H+ with each molecule of glutamate and counter-transport one K+; they are also coupled to a Cl? conductance. The movement of Na+ is sufficient to cause profound astrocytic depolarization, and the movement of H+ is linked to astrocytic acidification. In addition, the movement of Na+ can trigger the activation of Na+ co-transporters (e.g. Na+–Ca2+ exchangers). We will describe the ways in which these ionic movements have been linked as signals to brain function and/or metabolism. Second, these transporters co-compartmentalize with mitochondria, potentially providing a mechanism to supply glutamate to mitochondria as a source of fuel for the brain. We will provide an overview of the proteins involved, discuss the evidence that glutamate is oxidized, and then highlight some of the un-resolved issues related to glutamate oxidation. Finally, we will review evidence that ischemic insults (stroke or oxygen/glucose deprivation) cause changes in these astrocytic mitochondria and discuss the ways in which these changes have been linked to glutamate transport, glutamate transport-dependent signaling, and altered glutamate metabolism. We conclude with a broader summary of some of the unresolved issues.

  相似文献   

12.
Structural Features of the Glutamate Transporter Family   总被引:6,自引:0,他引:6       下载免费PDF全文
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary transporters but may resemble loop-pores found in ion channels. A second distinctive structural feature is the presence of a highly amphipathic membrane-spanning helix that provides a hydrophilic path through the membrane. Recent data from analysis of site-directed mutants and studies on the mechanism and pharmacology of the transporters are discussed in relation to the structural model.  相似文献   

13.
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning alpha-helices and a loop-pore structure which is unique among secondary transporters but may resemble loop-pores found in ion channels. A second distinctive structural feature is the presence of a highly amphipathic membrane-spanning helix that provides a hydrophilic path through the membrane. Recent data from analysis of site-directed mutants and studies on the mechanism and pharmacology of the transporters are discussed in relation to the structural model.  相似文献   

14.
White matter oligodendrocytes have been shown to actively regulate extracellular glutamate levels in the CNS. Such function has yet not been examined in satellite oligodendrocytes of gray matter. Similar to those in white matter, satellite oligodendrocytes are involved in myelination. In addition, they modulate the activity of surrounding neurons. This study examined whether satellite oligodendrocytes express PACAP and glutamate transporter proteins and whether this expression is influenced by global ischemia. We demonstrated expression of PACAP27 and PACAP38 in a major fraction of satellite oligodendrocytes in normal neocortex and hippocampus of human brain tissues obtained post-mortem. All three glutamate transporters EAAT1, EAAT2 and EAAT3 were expressed in satellite oligodendrocytes from these tissues. Thus, satellite oligodendrocytes may participate in the perineuronal glutamate homeostasis. Following transient global ischemia, the total number of satellite oligodendrocytes expressing PACAP or glutamate transporter proteins was significantly decreased in cerebral neocortex and hippocampus. However, alterations of PACAP and glutamate transporter protein expression were region and time specific. In satellite oligodendrocytes of CA1 an early strong reduction of PACAP and glutamate transporter expression was observed. This contrasted with late reduction of PACAP27, PACAP38 and glutamate transporters EAAT1, EAAT2 and EAAT3 in satellite oligodendrocytes of neocortex. Further studies should clarify whether these alterations in protein expression are primary or secondary to neuronal cell death.  相似文献   

15.
Glutamate transport is coupled to the co-transport of 3 Na(+) and 1 H(+) followed by the counter-transport of 1 K(+). In addition, glutamate and Na(+) binding to glutamate transporters generates an uncoupled anion conductance. The human glial glutamate transporter EAAT1 (excitatory amino acid transporter 1) also allows significant passive and active water transport, which suggests that water permeation through glutamate transporters may play an important role in glial cell homoeostasis. Urea also permeates EAAT1 and has been used to characterize the permeation properties of the transporter. We have previously identified a series of mutations that differentially affect either the glutamate transport process or the substrate-activated channel function of EAAT1. The water and urea permeation properties of wild-type EAAT1 and two mutant transporters were measured to identify which permeation pathway facilitates the movement of these molecules. We demonstrate that there is a significant rate of L-glutamate-stimulated passive and active water transport. Both the passive and active L-glutamate-stimulated water transport is most closely associated with the glutamate transport process. In contrast, L-glutamate-stimulated [(14)C]urea permeation is associated with the anion channel of the transporter. However, there is also likely to be a transporter-specific, but glutamate independent, flux of water via the anion channel.  相似文献   

16.
Glutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of GltPh – an archaeal homolog of the glutamate transporters – in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues. These transporters cycle through several conformational states during the transport process, including the chloride conducting state, which appears to be stabilised by protein–membrane interactions and membrane deformation. Several point mutations that perturb the chloride conductance can have detrimental effects and are linked to the pathogenesis of the neurological disorder, episodic ataxia type 6.  相似文献   

17.
In absence epilepsy, epileptogenic processes are suspected of involving an imbalance between GABAergic inhibition and glutamatergic excitation. Here, we describe alteration of the expression of glutamate transporters in rats with genetic absence (the Genetic Absence Epilepsy Rats from Strasbourg: GAERS). In these rats, epileptic discharges, recorded in the thalamo-cortical network, appear around 40 days after birth. In adult rats no alteration of the protein expression of the glutamate transporters was observed. In 30-day-old GAERS protein levels (quantified by western blot) were lower in the cortex by 21% and 35% for the glial transporters GLT1 and GLAST, respectively, and by 32% for the neuronal transporter EAAC1 in the thalamus compared to control rats. In addition, the expression and activity of GLAST were decreased by 50% in newborn GAERS cortical astrocytes grown in primary culture. The lack of modification of the protein levels of glutamatergic transporters in adult epileptic GAERS, in spite of mRNA variations (quantified by RT-PCR), suggests that they are not involved in the pathogeny of spike-and-wave discharges. In contrast, the alteration of glutamate transporter expression, observed before the establishment of epileptic discharges, could reflect an abnormal maturation of the glutamatergic neurone-glia circuitry.  相似文献   

18.
SGLT1 is a sodium/glucose cotransporter that moves two Na(+) ions with each glucose molecule per cycle. SGLT3 proteins belong to the same family and are described as glucose sensors rather than glucose transporters. Thus, human SGLT3 (hSGLT3) does not transport sugar, but extracellular glucose depolarizes the cell in which it is expressed. Mouse SGLT3b (mSGLT3b), although it transports sugar, has low apparent sugar affinity and partially uncoupled stoichiometry compared with SGLT1, suggesting that mSGLT3b is also a sugar sensor. The crystal structure of the Vibrio parahaemolyticus SGLT showed that residue Gln(428) interacts directly with the sugar. The corresponding amino acid in mammalian proteins, 457, is conserved in all SGLT1 proteins as glutamine. In SGLT3 proteins, glutamate is the most common residue at this position, although it is a glycine in mSGLT3b and a serine in rat SGLT3b. To test the contribution of this residue to the function of SGLT3 proteins, we constructed SGLT3b mutants that recapitulate residue 457 in SGLT1 and hSGLT3, glutamine and glutamate, respectively. The presence of glutamine at residue 457 increased the apparent Na(+) and sugar affinities, whereas glutamate decreased the apparent Na(+) affinity. Moreover, glutamate transported more cations per sugar molecule than the wild type protein. We propose a model where cations are released intracellularly without the release of sugar from an intermediate state. This model explains the uncoupled charge:sugar transport phenotype observed in wild type and G457E-mSGLT3b compared with SGLT1 and the sugar-activated cation transport without sugar transport that occurs in hSGLT3.  相似文献   

19.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

20.
Traditionally, glutamate transporters have been viewed as membrane proteins that harness the electrochemical gradient to slowly transport glutamate from the extracellular space into glial cells. However, recent studies have shown that glutamate transporters on glial and neuronal membranes also rapidly bind released glutamate to shape synaptic transmission. In this Review, we summarize the properties of glutamate transporters that influence synaptic transmission and are subject to regulation and plasticity. We highlight how the diversity of glutamate-transporter function relates to transporter location, density and affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号