首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.  相似文献   

3.
Mammary epithelial (ME) cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV)-Neu–induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs) on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam). These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.  相似文献   

4.
Isolation murine mesenchymal stem cells by positive selection   总被引:2,自引:0,他引:2  
Isolation and purification of mesenchymal stem cells (MSCs) from mouse via plastic adherent cultures is arduous because of the unwanted growth of hematopoietic cells and non-MSCs. In this work, homogenous populations of CD34+ MSCs from mouse bone marrow were isolated via positive selection. For this purpose, C57Bl/6 mice were killed and bone marrow cells were aspirated before incubation with magnetic bead conjugated to anti-CD34 antibody. A sample of positively selected CD34+ cells were prepared for flow cytometry to examine the expression of CD34 antigen and others were subcultured in a 25-cm2 culture flask. To investigate the mesenchymal nature, the plastic adherent cultivated cells were induced to differentiate along osteoblastic and adipogenic lineages. Furthermore, the expression of some surface markers was investigated by flow cytometry. According to the result, purified populations of fibroblast-like CD34+ cells were achieved in the first passage (1 wk after culture initiation). The cells expressed CD34, CD44, Sca-1, and Vcam-1 antigens (markers) but not CD11b and CD45. They were capable of differentiating into osteocytes and adipocytes. This study indicated that our protocol can result in the efficient isolation of homogenous populations of MSCs from C57BL/6 mouse bone marrow. We have shown that murine bone marrow-derived CD34+ cells with plastic adherent properties and capability of differentiating into skeletal lineages in vitro are MSCs.  相似文献   

5.
Mesenchymal stem cells (MSC) have been derived from different cultured human tissues, including bone marrow, adipose tissue, amniotic fluid and umbilical cord blood. Only recently it was suggested that MSC descended from perivascular cells, the latter being defined as CD146+ neuro‐glial proteoglycan (NG)2+ platelet‐derived growth factor‐Rβ+ ALP+ CD34 CD45 von Willebrand factor (vWF) CD144. Herein we studied the properties of perivascular cells from a novel source, the foetal human umbilical cord (HUC) collected from pre‐term newborns. By immunohistochemistry and flow cytometry we show that pre‐term/foetal HUCs contain more perivascular cells than their full‐term counterparts (2.5%versus 0.15%). Moreover, foetal HUC perivascular cells (HUCPC) express the embryonic cell markers specific embryonic antigen‐4, Runx1 and Oct‐4 and can be cultured over the long term. To further confirm the MSC identity of these cultured perivascular cells, we also showed their expression at different passages of antigens that typify MSC. The multilineage differentiative capacity of HUCPC into osteogenic, adipogenic and myogenic cell lineages was demonstrated in culture. In the perspective of a therapeutic application in chronic lung disease of pre‐term newborns, we demonstrated the in vitro ability of HUCPC to migrate towards an alveolar type II cell line damaged with bleomycin, an anti‐cancer agent with known pulmonary toxicity. The secretory profile exhibited by foetal HUCPC in the migration assay suggested a paracrine effect that could be exploited in various clinical conditions including lung disorders.  相似文献   

6.
Background aimsThe presence of ectopic tissues in the pathologic artery wall raises the issue of whether multipotent stem cells may reside in the vasculature itself. Recently mesenchymal stromal cells (MSC) have been isolated from different human vascular segments (VW MSC), belying the previous view that the vessel wall is a relatively quiescent tissue.MethodsResident multipotent cells were recovered from fresh arterial segments (aortic arches, thoracic and femoral arteries) collected in a tissue-banking facility and used to establish an in situ and in vitro study of the stemness features and multipotency of these multidistrict MSC populations.ResultsNotch-1+, Stro-1+, Sca-1+ and Oct-4+ cells were distributed along an arterial wall vasculogenic niche. Multidistrict VW MSC homogeneously expressed markers of stemness (Stro-1, Notch-1 and Oct-4) and MSC lineages (CD44, CD90, CD105, CD73, CD29 and CD166) whilst they were negative for hematopoietic and endothelial markers (CD34, CD45, CD31 and vWF). Each VW MSC population had characteristics of stem cells, i.e. a high efflux capability for Hoechst 33342 dye and the ability to form spheroids when grown in suspension and generate colonies when seeded at low density. Again, VW MSC cultured in induction media exhibited adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic differentiation, as documented by histochemical, immunohistochemical, molecular and electron microscopy analysis.ConclusionsOverall, these findings may enlighten the physiopathologic mechanisms of vascular wall diseases as well as having potential implications for cellular, genetic and tissue engineering approaches to treating vascular pathologies when these are unresponsive to medical and surgical therapies.  相似文献   

7.
8.
Variations in co-signal ligand expression and cytokine production greatly influence the antigen-presenting properties of migrating DCs in regional lymph nodes (RLNs). Here we investigated DCs migrating from the oral mucosa using CD326 and CD103 antigens for discriminate CD207+ Langerhans cells (LCs) from CD207+ submucosal DCs (SMDCs). Similar to DCs migrating from the skin, we identified four distinct oral mucosal DC (OMDC) subsets, CD11chiCD207CD103CD326intCD11bhi (F1; resident CD11bhi SMDCs), CD11cint/loCD207-CD103-CD326loCD11bint/hi (F2; newly recruited blood-derived SMDCs), CD11cint/loCD207+CD103+CD326int/hiCD11blo (CD103+ F3; resident CD207+ SMDCs), and CD11cint/loCD207+CD103-CD326int/hiCD11blo (CD103- F3; resident LCs). F1 DCs migrated rapidly after fluorescein isothiocyanate (FITC) painting and expressed notably high levels of CD86, CD273, and CD274 at an earlier time point. In contrast, CD103 LCs expressing the highest levels of the epithelial cell adhesion molecule CD326 accounted for a minor subset at the earlier time point, but increased slowly with CD103+CD207+ SMDCs. However, their expression of CD86, CD273, and CD274 was very limited. The delayed migration and limited induction of co-signal ligands suggest that roles of OMLCs are distinct from those of the other three DC subsets. The identification of distinct subsets of OMDCs in RLNs may benefit efforts to determine the functional specialization of each subset in T cell responses against orally administrated antigens.  相似文献   

9.
Although recent studies suggest that hyperlipidemia is a risk factor for osteoarthritis (OA), the link between OA and hyperlipidemia is not fully understood. As the number of activated, circulating myeloid cells is increased during hyperlipidemia, we speculate that myeloid cells contribute to the pathology of OA. Here, we characterized myeloid cells in STR/Ort mice, a murine osteoarthritis model, under hyperlipidemic conditions. Ratios of myeloid cells in bone marrow, the spleen, and peripheral blood were determined by flow cytometry. To examine the influence of the hematopoietic environment, including abnormal stem cells, on the hematopoietic profile of STR/Ort mice, bone marrow transplantations were performed. The relationship between hyperlipidemia and abnormal hematopoiesis was examined by evaluating biochemical parameters and spleen weight of F2 animals (STR/Ort x C57BL/6J). In STR/Ort mice, the ratio of CD11b+Gr1+ cells in spleens and peripheral blood was increased, and CD11b+Gr1+ cells were also present in synovial tissue. Splenomegaly was observed and correlated with the ratio of CD11b+Gr1+ cells. When bone marrow from GFP-expressing mice was transplanted into STR/Ort mice, no difference in the percentage of CD11b+Gr1+ cells was observed between transplanted and age-matched STR/Ort mice. Analysis of biochemical parameters in F2 mice showed that spleen weight correlated with serum total cholesterol. These results suggest that the increase in circulating and splenic CD11b+Gr1+ cells in STR/Ort mice originates from hypercholesterolemia. Further investigation of the function of CD11b+Gr1+ cells in synovial tissue may reveal the pathology of OA in STR/Ort mice.  相似文献   

10.
Background aimsThe manufacture of multipotential stromal cell (MSC)-based products is costly; therefore, a rapid evaluation of bone marrow (BM) ‘quality’ with respect to MSC content is desirable. The aim of this study was to develop a rapid single-platform assay to quantify MSC in BM aspirates.MethodsAspirated MSC were enumerated using the CD45?/low CD271bright phenotype and AccuCheck counting beads and compared with a classic colony-forming unit–fibroblast (CFU-F) assay. The phenotype of CD45?/low CD271bright cells was defined using a range of MSC (CD73, CD105, CD90) and non-MSC (CD31, CD33, CD34, CD19) markers. The effect of aspirated BM volume on MSC yield was also determined.ResultsCD45?/low CD271bright cells had a classic MSC phenotype (CD73+ CD105+ CD90+ ). Their numbers correlated positively with CFU-F counted manually (R = 0.81, P < 0.001) or using automatic measurements of surface area occupied by colonies (R = 0.66, P < 0.001). Simultaneous enumeration of CD34 + cells revealed donor variability ranges compatible with standard International Society of Hematotherapy and Graft Engineering (ISHGE) protocols. Aspirating larger marrow volumes gave a significant several-fold reduction in the frequency of CFU-F and CD45?/low CD271bright cells per milliliter. Therefore aspirated MSC yields can be maximized through a standardized, low-volume harvesting technique.ConclusionsAbsolute quantification of CD45?/low CD271bright cells was found to be a reliable method of predicting CFU-F yields in BM aspirates. This rapid (< 40 min) procedure could be suitable for intra-operative quality control of BM aspirates prior to volume reduction/direct injection in orthopedics. In the production of culture-expanded MSC, this assay could be used to exclude samples containing low numbers of MSC, resulting in improved consistency and quality of manufactured MSC batches.  相似文献   

11.
Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis.  相似文献   

12.
The tumor microenvironment may recruit monocytes, with a protumoral macrophage phenotype (M2) that plays an important role in solid tumor progression and metastasis. Therefore, it is necessary to understand the characteristics of these cells for cancer prevention and treatment. Bladder cancer tissue samples and paracarcinoma tissues samples were collected, and the expression of CD163+ cells in tumor tissues was observed. Then, we observed the expression of infiltrating CD45+CD14+CD163+ cell subset and analyzed the molecular expressions related to immunity and angiogenesis. C57/BL6 mice were inoculated subcutaneously, and dynamic changes of CD11b+F4/80+CD206+ mononuclear macrophages expression for tumor-bearing mice were detected. The results showed that the proportion of CD45+CD14+CD163+ mono-macrophage subset infiltrated by tumor tissue was significantly higher than that in paracarcinoma tissues. In bladder cancer tissue, the expression rate of CD40 in CD45+CD14+CD163- mono-macrophage subset was significantly lower than that in CD45+CD14+CD163+ mono-macrophage subset. Similar results were found in the paracarcinoma tissues. We found that, as the proportion of CD11b+F4/80+CD206+ mono-macrophages increased gradually, the difference was statistically significant. CD163+/CD206+ mono-macrophages in bladder cancer microenvironment are abnormally elevated, and these cells are closely related to tumor progression. CD40 may be an important molecule that exerts biological function in this subset.  相似文献   

13.
Osteoclasts are multinucleated giant cells that originate from a monocyte/macrophage lineage, and are involved in the inflammatory bone destruction accompanied by periodontitis. Recent studies have shown that osteoclast precursors reside not only in the bone marrow, but also in the peripheral blood and spleen, though the precise characteristics of each precursor have not been analyzed. We hypothesized that the number of osteoclast precursors in those tissues may increase under pathological conditions and contribute to osteoclast formation in vivo in a mouse model. To test this hypothesis, we attempted to identify cell populations that possess osteoclast differentiation potential in the bone marrow, spleen, and blood by analyzing macrophage/monocyte-related cell surface markers such as CD11b, CD14, and colony-stimulating factor-1 receptor (c-Fms). In the bone marrow, the CD11b? cell population, but not the CD11b+ cell population, differentiated into osteoclasts in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. On the other hand, in the spleen and blood, CD11b+ cells differentiated into osteoclasts. Interestingly, lipopolysaccharide (LPS) administration to the mice dramatically increased the proportion of CD11b+ c-Fms+ CD14+ cells, which differentiated into osteoclasts, in the bone marrow and spleen. These results suggest that LPS administration increases the proportion of a distinct cell population expressing CD11b+, c-Fms+, and CD14+ in the bone marrow and spleen. Thus, these cell populations are considered to contribute to the increase in osteoclast number during inflammatory bone destruction such as periodontitis.  相似文献   

14.
We assessed the role of CCR5+/CCR6+/CD11b+/CD11c+ dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5+/CCR6+/CD11b+/CD11c+ DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b+/CD11c+ DCs were markedly decreased in both CCR5−/− and CCR6−/− mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5−/− or CD11c-DTR and CCR6−/− mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5+CCR6+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.  相似文献   

15.
Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy.  相似文献   

16.
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by systemic chronic inflammation that can affect multiple major organ systems. Although the etiology of SLE is known to involve a variety of factors such as the environment, random factors and genetic susceptibility, the exact role of CD11b+Gr1+ myeloid cells in lupus progression is not fully understood. Myeloid-derived CD11b+Gr1+ cells are thought to be a heterogeneous group of immature myeloid cells with immune function. Some studies have reported that CD11b+Gr1+ cells and the activation of mTOR pathway are involved in the pathogenesis of systemic lupus erythematosus (SLE). However, it is still not clarified about the mechanism of influence of lupus microenvironment and mTOR signaling on CD11b+Gr1+ cells. In the present study, we found that the percentage of CD11b+Gr1+ cells increased prior to the abnormal changes of Th17, Treg, T and B cells during lupus development. TLR7 and IFN-α signaling synergized to promote CD11b+Gr1+ cell accumulation in an mTOR-dependent manner. Moreover, compared to a traditional mTOR inhibitor, INK128 inhibited more effectively the disease activity via regulating CD11b+Gr1+ cell expansion and functions. Furthermore, TLR7/IFN-α-modified CD11b+Gr1+ cells promoted unbalance of Th17/Tregs and were inclined to differentiate into macrophages via the mTOR pathway. In conclusion, CD11b+Gr1+ cells increased in the early stages of the lupus progression and mTOR pathway was critical for CD11b+Gr1+ cells in lupus development, suggesting the changes of inflammation-induced CD11b+Gr1+ cells initate lupus development. We also provide evidence for the first time that INK128, a second generation mTOR inhibitor, has a good therapeutic action on lupus development by regulating CD11b+Gr1+ cells.  相似文献   

17.
Self-renewal is required for embryo stem cells (ESCs) and adipose-derived mesenchymal stem cells (ADMSCs). This study examined the ability of ferulic acid in mouse ESCs and ADMSCs, in a high fat diet-induced mouse model. Initially, five natural compounds of ferulic acid, xanthohumol, curcumin, ascorbic acid, and quercetin were screened in ESCs using an alkaline phosphate +(AP+) assay, as a self-renewal biomarker. A ferulic acid treatment was the highest AP+ staining in hop-hit screening compounds. Also a ferulic acid increased Nanog mRNA levels in ESCs. The in vivo effects of ferulic acid were next examined in an obese mouse model. C57BL/6 J male mice were fed either a high fat diet (HFD) or control diet with ferulic acid (5 g/kg diet) for 8 weeks. Ferulic acid exhibited weight loss and improved glucose homeostasis, lipid profiling, and hepatic steatosis in a HFD-induced mouse model. Next, ADMSCs (Sca-1+CD45), a hallmark of fat stem cells, were then isolated and quantified from mouse abdominal adipose tissue. A HFD decreased the Sca-1+CD45 cell population of ADMSCs, but HFD-induced obese mice given ferulic acid showed an increased the Sca-1+CD45 cell population of ADMSCs. Moreover, ferulic acid enhanced NANOG mRNA levels in human ADMSCs and its related gene mRNA expression. Overall, this study suggests that ferulic acid preserves self-renewal in ESCs, and contributes to ADMSCs self-renewal and effective weight control in obesity.  相似文献   

18.
Mesenchymal stem cells (MSCs) have been isolated based on the ability of adherence to plastic surfaces. The potential of these cells to differentiate along multiple lineages is the key to identifying stem cell populations in the absence of molecular markers. Here we describe a homogenous population of MSCs from mouse bone marrow isolated using a relatively straightforward and novel approach. This method is based on the combination of frequent medium change (FMC) and treatment of the primary cultures with trypsin. Cells isolated using this method demonstrated the MSCs characteristics including their ability to differentiate into mesenchymal lineages. MSCs retained the differentiation potentials in expanded cultures up to 10 passages. Isolated MSCs were reactive to the CD44, Sca-1, and CD90 cell surface markers. MSCs were negative for the hematopoietic surface markers such as CD34, CD11b, CD45, CD31, CD106, CD117 and CD135. The data presented in this report indicated that this method can result in efficient isolation of homogenous populations of MSCs from mouse bone marrow.  相似文献   

19.
ObjectiveMesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation.ResultsThere was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells.ConclusionThis is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.  相似文献   

20.
Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号