首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of malic enzyme gene expression by triiodothyronine and insulin was severely blunted in rat monolayer hepatocytes cultured on type I collagen compared with that in spherical hepatocytes cultured on a reconstituted basement membrane gel (EHS-gel). Although the mRNA level of thyroid hormone receptor β (TRβ) gradually decreased in the monolayer hepatocytes during culture, the mRNA level in the hepatocytes on EHS-gel was maintained at around the in vivo level. Our results suggest that the maintenance of TRβ mRNA on EHS-gel is responsible for the high responsiveness to thyroid hormone in a hepatocyte culture.  相似文献   

2.
3.
The culture of fetal hepatocytes for 64 h in medium supplemented with 5 mM glucose, T3, insulin, and dexamethasone resulted in the coordinate precocious expression of malic enzyme mRNA, protein, and specific activity. T3 was the main inducer; meanwhile, insulin exerted a small synergistic effect when added with T3. Dexamethasone had a potentiation effect on the T3 response of malic enzyme mRNA expression regardless of the presence of insulin. This effect of dexamethasone on T3 response of malic enzyme mRNA expression was time (64 h) and glucose dependent. Glucagon, and to a greater degree dibutyryl-cAMP, repressed malic enzyme mRNA as well as protein expression by T3 and dexamethasone, in the absence of insulin. Glucose and other carbon sources such as lactate-pyruvate or dihydroxyacetone induced the abundance of malic enzyme mRNA in the absence of hormones. Insulin and T3 produced a high accumulation of malic enzyme mRNA in lactate-pyruvate medium, this effect being decreased by dexamethasone. EGF supressed the induction produced by T3 and dexamethasone on malic enzyme mRNA, while the expression of β-actin mRNA remained essentially unmodified. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The mixed-function-oxidase (MFO) activities, ethoxyresorufin and pentoxyphenoxazone O-dealkylase, of cultured Hooded-Lister(HL)-rat hepatocytes declined rapidly during 72 h of culture, whereas in Sprague-Dawley(SD)-rat hepatocytes the MFO activities increased between 24 and 72 h in culture. Cytochrome P-450 content declined at the same rate in both HL- and SD-rat hepatocyte cultures. NADPH:cytochrome c reductase and NADH:cytochrome b5 reductase were more stable in SD- than in HL-rat hepatocyte cultures. 16,16-Dimethylprostaglandins E2 and F2 alpha improved the maintenance of cytochrome P-450 content, MFO activity and NADPH:cytochrome c reductase in the HL-rat hepatocyte cultures. In SD-rat hepatocytes, the prostaglandins had no effect on cytochrome P-450 content or NADPH:cytochrome c reductase activity, whereas they prevented the increase observed in MFO activities between 24 and 72 h after culture.  相似文献   

5.
6.
Instructions for authors   总被引:5,自引:0,他引:5  
The aim of the present study was to examine hypothesis that the enhanced cholesterologenesis, found in rats with experimental chronic renal failure (CRF) resulted from the increased gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – the rate limiting enzyme in the cholesterologenesis pathway, responsible for mevalonate synthesis. Wistar rats were used and experimental CRF was achieved by 5/6 nephrectomy model. We examined: (a) the changes in the rat liver microsomal HMG-CoA reductase activity, (b) the rat liver HMG-CoA reductase mRNA abundance in various times of day. Obtained data indicates that the increased activity of HMG-CoA reductase in the liver of rats with experimental CRF parallel enhanced mRNA level and suggests that enhanced cholesterol biosynthesis, observed in experimental CRF is at least in part due to the increased HMG-CoA reductase gene expression. The results also indicate that the physiological diurnal rhythm of HMG-CoA reductase activity is preserved in the course of experimental CRF.  相似文献   

7.
Rat foetal hepatocytes in primary cultures were used as a model for the study of malic enzyme gene expression. Carbohydrates and glycolytic metabolites produced the precocious induction of the malic enzyme in foetal hepatocytes cultured in the absence of serum and hormones. Palmitate prevented this induction. Insulin and triiodothyronine produced a significant increase in the malic enzyme specific activity in all the conditions studied. A synergistic effect between the two hormones is observed only when high concentrations of glucose are present. Glucagon prevents partially the induction produced by insulin plus triiodothyronine. Both carbohydrate and hormonal inductions of malic enzyme activity are related to parallel increases in its expression, and are prevented by protein synthesis inhibitors.  相似文献   

8.
The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove valuable for more detailed investigations of the molecular and mechanistic basis of the response to PB and its modulation by endogenous hormones.  相似文献   

9.
10.
11.
Assessment of a new chemical entity for cytochrome P450 (CYP) enzyme induction at an early stage in discovery is crucial to prevent potential drug-drug interactions. CYP3A, the most abundant CYP isoform in the liver, metabolizes approximately 50% of drugs currently on the market and is also a highly inducible enzyme. The use of both rat and human hepatocyte culture for the prediction of in vivo CYP3A induction has become refined and validated and is considered a standard in vitro model. The current evaluation of CYP3A enzyme induction involves the use of substrates requiring subsequent analysis of metabolites by high-performance liquid chromatography/mass spectrometry, which adds considerable time and cost. In the present study, we describe the use of a novel luminogenic substrate, luciferin-6'-pentafluoro-benzyl ether (PFBE), which allows for a fast and selective measurement of CYP3A enzyme induction in cultured rat hepatocytes. The extent of induction was evaluated using cells treated for 3 d with the prototypical inducers, dexamethasone, phenobarbital, and pregnenolone 16 alpha-carbonitrile (PCN). Enzyme activity was measured in the treated cells either by the depentafluorobenzylation of luciferin-PFBE or the testosterone 6-beta-hydroxylation. Using both methods, dexamethasone and PCN-treated cells exhibited strong CYP3A activity, whereas phenobarbital treatment resulted in a weak response. The fold induction varied between both methods, but this variability can be controlled by normalizing data from each treatment to a positive control. The results indicate that luciferin-PFBE is an attractive alternative to the use of conventional substrate, testosterone, providing a sensitive, robust, and rapid method compatible with the multiwell plate format for the assessment of CYP3A induction.  相似文献   

12.
13.
14.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

15.
Relative synthesis of malic enzyme is stimulated 25-to 100-fold by feeding neonatal ducklings or by incubating embryonic chick hepatocytes in culture with triiodothyronine. Synthesis of the enzyme is almost completely blocked when fed birds are starved or when triiodothyronine-treated hepatocytes in culture are also treated with glucagon. Cytoplasmic poly(A)+ RNA was isolated from livers of intact ducklings or hepatocytes in culture treated as described above and translated in an mRNA-dependent rabbit reticulocyte lysate. The identity of malic enzyme synthesized in the cell-free system was confirmed by virtue of its antigenicity, subunit molecular weight, and proteolytic peptide pattern. Translatable levels of malic enzyme mRNA paralleled changes in relative synthesis of malic enzyme in vivo and in hepatocytes in culture. Translatable levels od albumin mRNA were either unaffected or changed in a direction opposite to that of malic enzyme mRNA. Thus, both nutritional and hormonal regulation of malic enzyme synthesis involves regulation of cytoplasmic translatable malic enzyme mRNA levels. The hepatocyte culture system is ideally suited for future studies on the regulation of malic enzyme mRNA synthesis and/or degradation by thyroid hormone and glucagon.  相似文献   

16.
Induction of cytochrome P450 (CYP) by drugs is one of major concerns for drug-drug interactions. Thus, the assessment of CYP induction by novel compounds is a vital component in the drug discovery and development processes. Primary human hepatocytes are the preferred in vitro model for predicting CYP induction in vivo. However, their use is hampered by the erratic supply of human tissue and donor-to-donor variability. Although cryopreserved hepatocytes have been recommended for short-term applications in suspension, their use in studies on induction of enzyme activity has been limited because of poor attachment and response to enzyme inducers. In this study, we report culture conditions that allowed the attachment of cryopreserved human hepatocytes and responsiveness to CYP inducers. We evaluated the inducibility of CYP1A1/2 and CYP3A4 enzymes in cryopreserved hepatocytes from three human donors. Cryopreserved human hepatocytes were cultured in serum-free medium for 4 d. They exhibited normal morphology and measurable viability as evaluated by the reduction of tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) by cellular dehydrogenases. Treatment with beta-naphthoflavone (10 microM) for 3 d increased ethoxyresorufin-O-deethylase activity (CYP1A1/2) by 6- to 11-fold over untreated cultures and increased CYP1A2 messenger ribonucleic acid (mRNA) expression by three- to eightfold. Similarly, treatment of cryopreserved human hepatocytes with rifampicin (25 microM) for 3 d increased testosterone 6 beta-hydroxylase activity (CYP3A4) by five- to eightfold over untreated cultures and increased CYP3A4 mRNA expression by four- to eightfold. The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes.  相似文献   

17.
NADPH-cytochrome-c (P-450) reductase, a flavoprotein, is a constituent of the hepatic microsomal polysubstrate monooxygenase and catalyzes the transfer of electrons from NADPH to cytochrome P-450. The hormonal regulation of NADPH-cytochrome-c reductase activity and protein has been examined in insolated hepatocytes cultured as monolayers for 48 h in Waymouth's MB752/1 medium fortified with insulin, dexamethasone and triiodothyronine. No similarity between the response of NADPH-cytochrome-c reductase and of tyrosine aminotransferase and malate dehydrogenase activity to dexamethasone and triiodothyronine treatment could be detected. In the absence of hormones about 65% of the original NADPH-cytochrome-c reductase activity and protein estimated by the immunochemical staining technique was retained. Culture of hepatocytes in insulin (10.0 mU/ml) or dexamethasone (100 nM) alone but not triiodothyronine improved the retention of reductase activity and protein. Only when hepatocytes were cultured in insulin, triiodothyronine and dexamethasone could NADPH-cytochrome-c reductase activity and protein be maintained at the original level. Dexamethasone alone was found to enhance consistently retention of reductase protein, but not reductase activity, to approximately the same level as in freshly isolated hepatocytes. The results suggest that microsomal NADPH-cytochrome-c reductase activity and protein can be maintained in isolated hepatocytes at the original level by culturing the cells in dexamethasone, insulin and triiodothyronine.  相似文献   

18.
Freshly isolated adult rat hepatocytes, when cultured on type I collagen (commercially available as Vitrogen), assume a polygonal shape, form a stable monolayer within 24 hours, but lose the capacity to express some liver-specific functions over time in culture. We incubated hepatocytes in a serum-free medium on a reconstituted basement membrane gel, "matrigel" (prepared from an extract of extracellular matrix of the murine Engelbreth-Holm-Swarm sarcoma), and observed that the cells adhered firmly, remained rounded as single cells or clusters, and maintained liver-specific gene expression for more than 1 week in vitro. Hepatocytes on matrigel secreted substantially higher amounts of albumin, transferrin, haptoglobin, and hemopexin, Northern blot analyses of extracted cellular RNA, expressed increased amounts of mRNA for the liver-specific protein albumin (as compared with cells on vitrogen). In cultures treated with phenobarbital, cytochrome P-450b, and cytochrome P-450e, mRNAs and proteins were barely detectable in cells on Vitrogen but were induced to levels similar to those in the liver in vivo in matrigel cultures. Likewise, the use of matrigel greatly enhanced the induction of mRNA and protein for P-450c by 3-methylcholanthrene and for P-450p by steroidal and nonsteroidal inducers. However, neither substratum permitted induction of P-450d by 3-methylcholanthrene, suggesting that the effects of matrigel are selective even for expression in liver of members of the superfamily of cytochrome P-450 genes. Within 5 days in cultures on Vitrogen, hepatocytes expressed detectable amounts of fetal liver aldolase activity and also mRNA for vimentin and type I collagen, each considered a phenotypic change reflecting hepatocyte "dedifferentiation." None of these was present in cells on matrigel. Responsiveness to mitogenic stimuli, as judged by incorporation of 3H-thymidine into DNA, was also decreased in hepatocytes cultured on matrigel. Finally, there was a remarkable increase in the levels of both matrices during the first 2 days in culture. However, the continuously cytoskeleton mRNA over time in culture than did the rounded cells on matrigel. We conclude that hepatocytes cultured on matrigel, as opposed to the standard collagen, exhibit remarkably enhanced expression of many liver-specific functions.  相似文献   

19.
20.
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 μM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01–3.5 mM). Culturing in the absence of insulin produced 1.5–2‐fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell‐shaped dose‐response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB‐induction magnitude and dose‐response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone‐ and β‐naphthoflavone‐inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver‐specific gene expression in primary rat hepatocytes. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 1–9, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号