首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
We present the idea of using multiresponse incomplete block designs when not all responses can be observed in all experimental units. For a special class of such designs, in which partial designs are PBB designs, a method for estimating natural treatment contrast is given. We also consider the problem of testing the hypotheses concerning the natural and any estimable treatment contrasts. For testing this hypothesis the Wald statistics, being asymptotically chi-square distributed, is proposed.  相似文献   

2.
In a simulation study different designs for a pure line pig population were compared for efficiency of mapping QTL using the variance component method. Phenotypes affected by a Mendelian QTL, a paternally expressed QTL, a maternally expressed QTL or by a QTL without an effect were simulated. In all alternative designs 960 progeny were phenotyped. Given the limited number of animals there is an optimum between the number of families and the family size. Estimation of Mendelian and parentally expressed QTL is more efficient in a design with large family sizes. Too small a number of sires should be avoided to minimize chances of sires to be non-segregating. When a large number of families is used, the number of haplotypes increases which reduces the accuracy of estimating the QTL effect and thereby reduces the power to show a significant QTL and to correctly position the QTL. Dense maps allow for smaller family size due to exploitation of LD-information. Given the different possible modes of inheritance of the QTL using 8 to16 boars, two litters per dam was optimal with respect to determining significance and correct location of the QTL for a data set consisting of 960 progeny. The variance component method combining linkage disequilibrium and linkage analysis seems to be an appropriate choice to analyze data sets which vary in marker density and which contain complex family structures.  相似文献   

3.
Kao CH 《Genetics》2006,174(3):1373-1386
In the data collection of the QTL experiments using recombinant inbred (RI) populations, when individuals are genotyped for markers in a population, the trait values (phenotypes) can be obtained from the genotyped individuals (from the same population) or from some progeny of the genotyped individuals (from the different populations). Let Fu be the genotyped population and Fv (v>or=u) be the phenotyped population. The experimental designs that both marker genotypes and phenotypes are recorded on the same populations can be denoted as (Fu/Fv, u=v) designs and that genotypes and phenotypes are obtained from the different populations can be denoted as (Fu/Fv, v>u) designs. Although most of the QTL mapping experiments have been conducted on the backcross and F2(F2/F2) designs, the other (Fu/Fv, v>or=u) designs are also very popular. The great benefits of using the other (Fu/Fv, v>or=u) designs in QTL mapping include reducing cost and environmental variance by phenotyping several progeny for the genotyped individuals and taking advantages of the changes in population structures of other RI populations. Current QTL mapping methods including those for the (Fu/Fv, u=v) designs, mostly for the backcross or F2/F2 design, and for the F2/F3 design based on a one-QTL model are inadequate for the investigation of the mapping properties in the (Fu/Fv, uor=u) designs. In addition, the QTL mapping properties of the proposed and approximate methods in different designs are discussed. Simulations were performed to evaluate the performance of the proposed and approximate methods. The proposed method is proven to be able to correct the problems of the approximate and current methods for improving the resolution of genetic architecture of quantitative traits and can serve as an effective tool to explore the QTL mapping study in the system of RI populations.  相似文献   

4.
R. D. Fisch  M. Ragot    G. Gay 《Genetics》1996,143(1):571-577
The recent advent of molecular markers has created a great potential for the understanding of quantitative inheritance. In parallel to rapid developments and improvements in molecular marker technologies, biometrical models have been constructed, refined and generalized for the mapping of quantitative trait loci (QTL). However, current models present restricitions in terms of breeding designs to which they apply. In this paper, we develop an approach for the generalization of the mixture model for progeny from a single bi-parental cross of inbred lines. Detailed derivations are given for genetic designs involving populations developed by selfing, i.e., where marker genotypes are obtained from F(x) (x >=2) individuals and where phenotypes are measured on F(y) (y >=x) individuals or families. Extensions to designs involving doubled-haploids, backcross-derived individuals and random matings are outlined. The derivations presented here can easily be combined with current QTL mapping approaches.  相似文献   

5.
Optimal experimental designs were evaluated for the precise estimation of parameters of the Hill model. The optimally effective designs were obtained by using the criterion of D-optimization. For the Hill model, optimal designs replicate 3 sampling points. These points were shown to be quite sensitive to the behavior of the experimental error. Since an investigator is often uncertain about error conditions in biological studies, a practical approach would use the sampling scheme calculated for an intermediate error condition. Thus, if the behavior of error variances is not known, precise parameters of the Hill model are obtained by choosing concentrations which yield fractional responses (responses divided by their asymptotic, maximum value) of 0.086, 0.581 and 1.0. When experimental constraints limit the maximum attainable concentration and response, all design points are lowered. Appropriate designs can be constructed based on the design which is optimal when constraints result in a maximum attainable fractional response of 0.5. The optimal designs were found to be robust when the parameter values assumed by the investigator did not equal their true values. The estimating efficiencies obtained by using two frequently applied designs were assessed. Uniformly spaced concentrations yielded imprecise parameters. Six-point, geometrically spaced designs gave generally good results. However, their estimating efficiency was generally exceeded by the recommended sampling schemes even in the presence of uncertainty about error conditions. The method exemplified in this paper can be used for other models.  相似文献   

6.
J L Jinks  P Towey 《Heredity》1976,37(1):69-81
A new method, genotype assay, is described for estimating k the number of genes or more strictly the number of effective factors responsible for variation of a continuous kind. The central feature is the determination of the proportion of individuals in the Fn generation of a cross between two pure breeding lines that are heterozygous at, at least, one locus by an assay of their Fn+2 grand progeny families. The observed proportion is then equated to a theoretical expectation which is a function of the number of genes involved. Expectations generalised to cover any generation n for experimental designs in which every Fn individual is assayed by comparing two Fn+2 grand progeny families have been derived for two limiting cases; one in which all genotypic differences are expressed as phenotypic differences and the other where the expression is minimised by imposing the maximum and relational balancing out of the contributions of individual gene loci. Equating the observed proportion of heterozygotes to these expectations therefore, leads to an upper and a lower estimate of k corresponding with these two limiting conditions. The reliability and sensitivity of the estimates depends primarily on n the generation chosen for study, the number of individuals (m) assayed from that generation and the number of individuals (l) raised in each Fn+2 grand progeny family. The two variables m and l being the principal determinants of the variances of the family means set the lower limit to the size of the gene effects that can be detected. The method is illustrated by assays of the F3 and F5 generations of two crosses between conditioned lines of Nicotiana rustica for three characters. The estimates are, without exception, as great as or greater than those obtained by alternative procedures. They show large, consistent increases between the F3 and F5 that cannot be traced to greater sensitivity of the latter generation and hence are presumably genuine.  相似文献   

7.
Summary For the measurements of outcrossing rates in plant populations, current electrophoretic procedures permit many loci to be scored per individual progeny. Given that the total experimental effort or cost is limited, the choice exists then between assaying a large number of loci on a restricted number of individuals, or assaying a large number of individuals at a few loci. Using simple models and the criterion of minimising the variance of the estimate, several factors which affect this choice are considered (levels of polymorphism, heterozygosity, linkage disequilibrium, pollen or outcrossing heterogeneity). The general conclusion is that the actual level of outcrossing is a major factor in determining experimental strategy. Maximum efficiency for estimating outcrossing in predominantly inbreeding plants comes from large samples assayed for few polymorphic loci. In contrast, in predominantly outcrossing plants, more loci should be assayed at the expense of sample size for improved statistical efficiency.  相似文献   

8.

Background

In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods.

Results

A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference.

Conclusion

The theory is fully developed and an example is given.  相似文献   

9.
Schoen DJ  Clegg MT 《Genetics》1986,112(4):927-945
Estimation of mating system parameters in plant populations typically employs family-structured samples of progeny genotypes. These estimation models postulate a mixture of self-fertilization and random outcrossing. One assumption of such models concerns the distribution of pollen genotypes among eggs within single maternal families. Previous applications of the mixed mating model to mating system estimation have assumed that pollen genotypes are sampled randomly from the total population in forming outcrossed progeny within families. In contrast, the one-pollen parent model assumes that outcrossed progeny within a family share a single-pollen parent genotype. Monte Carlo simulations of family-structured sampling were carried out to examine the consequences of violations of the different assumptions of the two models regarding the distribution of pollen genotypes among eggs. When these assumptions are violated, estimates of mating system parameters may be significantly different from their true values and may exhibit distributions which depart from normality. Monte Carlo methods were also used to examine the utility of the bootstrap resampling algorithm for estimating the variances of mating system parameters. The bootstrap method gives variance estimates that approximate empirically determined values. When applied to data from two plant populations which differ in pollen genotype distributions within families, the two estimation procedures exhibit the same behavior as that seen with the simulated data.  相似文献   

10.
 Integer Linear Programming was used to maximize genetic gain from selection at a given level of relatedness. Variances and breeding values for total height were available for 296 plus-trees of Pinus sylvestris which had been evaluated by open-pollinated progeny testing at a single test site in northern Sweden. Second-generation breeding and selection scenarios for this breeding population were evaluated using simulated data derived deterministically from normal distributions of estimated breeding values of progeny around mid-parent family means. The study considered two mating designs, assortative and non-assortative single-pair mating, and two selection criteria, individual phenotype and performance of half-sib progeny. Relatedness (group coancestry) was restricted to a level equivalent to that given by within-family selection of 2 trees per family from each of 25 families (the current standard in Sweden). Selection that allows the best-performing families to contribute a greater number of progeny was superior, both when the breeding population size was limited to 50 individuals and when it was allowed to be larger. The selected set giving the greatest average breeding value under restricted group coancestry included the best individual from families that would have been rejected under application of standard within-family selection. We made a comparison of the present value on retrieved gain between phenotypic selection and evaluation by progeny testing. Received: 24 November 1998 / Accepted: 14 December 1998  相似文献   

11.
Using statistical methods, the designs of multifraction experiments which are likely to give the most precise estimate of the alpha-beta ratio in the linear-quadratic model are investigated. The aim of the investigation is to try to understand what features of an experimental design make it efficient for estimating alpha/beta rather than to recommend a specific design. A plot of the design on an nd2 versus nd graph is suggested, and this graph is called the design plot. The best designs are those which have a large spread in the isoeffect direction in the design plot, which means that a wide range of doses per fraction should be used. For binary response assays, designs with expected response probabilities near to 0.5 are most efficient. Furthermore, dose points with expected response probabilities outside the range 0.1 to 0.9 contribute negligibly to the efficiency with which alpha/beta can be estimated. For "top-up" experiments, the best designs are those which replace as small a portion as possible of the full experiment with the top-up scheme. In addition, from a statistical viewpoint, it makes no difference whether a single large top-up dose or several smaller top-up doses are used; however, other considerations suggest that two or more top-up doses may be preferable. The practical realities of designing experiments as well as the somewhat idealized statistical considerations are discussed.  相似文献   

12.
P. Bijma  JAM. Van-Arendonk    H. Bovenhuis 《Genetics》1997,145(4):1243-1249
Under gynogenetic reproduction, offspring receive genes only from their dams and completely homozygous offspring are produced within one generation. When gynogenetic reproduction is applied to fully inbred individuals, homozygous clone lines are produced. A mixed model method was developed for breeding value and variance component estimation in gynogenetic families, which requires the inverse of the numerator relationship matrix. A general method for creating the inverse for a population with unusual relationships between animals is presented, which reduces to simple rules as is illustrated for gynogenetic populations. The presence of clones in gynogenetic populations causes singularity of the numerator relationship matrix. However, clones can be regarded as repeated observations of the same genotype, which can be accommodated by modifying the incidence matrix, and by considering only unique genotypes in the estimation procedure. Optimum gynogenetic sib family sizes for estimating heritabilities and estimates of their accuracy were derived and compared to those for conventional full-sib designs. This was done by means of a deterministic derivation and by stochastic simulation using Gibbs sampling. Optimum family sizes were smallest for gynogenetic families. Only for low heritabilities, there was a small advantage in accuracy under the gynogenetic design.  相似文献   

13.
The management of a genetic improvement program is based on the knowledge of the genetic parameters and their relationships to determine the genetic gains. Knowledge of the coefficient of coancestry (θ) is a requirement for efficient progeny testing scheme and for estimating additive variance components for any quantitative trait. When using open-pollinated families, most authors assume that the seedlings are related as half-sibs, but this is not always true. Our aim was to estimate a mean value of the coancestry coefficient of the families present in a maritime pine Pinus pinaster Ait. (maritime or cluster pine) progeny trial originating from seed collected in a clonal seed orchard and to study how deviations from the standard assumption of θ = 0.125 affect heritability estimations. Five highly polymorphic microsatellite markers were scored in 125 offspring from a subsample of five families from the progeny trial. The mean value of the coancestry coefficient of the families present in this progeny trial was 0.130. Differences between the unadjusted and adjusted heritability estimates were more pronounced in wood density (0.609 and 0.586, respectively) than in diameter (0.166 and 0.154, respectively). We conclude that in the trial, the associated error in heritability estimates due to the inclusion of full-sibs, when assuming a standard coefficient of relationship among open-pollinated sibs of 0.250, was low and that this result is robust with respect to the number of families sampled, given unbiased estimates of average relationship among offspring within sib families.  相似文献   

14.
Becks L  Agrawal AF 《PLoS biology》2012,10(5):e1001317
Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus, we show that rates of sex evolve to higher levels during adaptation but then decline as fitness plateaus. To assess the fitness consequences of genetic mixing, we directly compare the fitnesses of sexually and asexually derived genotypes that naturally occur in our experimental populations. Sexually derived genotypes are more fit than asexually derived genotypes when adaptive pressures are strong, but this pattern reverses as the pace of adaptation slows, matching the pattern of evolutionary change in the rate of sex. These fitness assays test the net effect of sex but cannot be used to disentangle whether selection on sex arises because highly sexual lineages become associated with different allele combinations or with different allele frequencies than less sexual lineages (i.e., "short-" or "long-term" effects, respectively). We infer which of these mechanisms provides an advantage to sex by performing additional manipulations to obtain fitness distributions of sexual and asexual progeny arrays from unbiased parents (rather than from naturally occurring, and thereby evolutionarily biased, parents). We find evidence that sex breaks down adaptive gene combinations, resulting in lower average fitness of sexual progeny (i.e., a short-term disadvantage to sex). As predicted by theory, the advantage to sex arises because sexually derived progeny are more variable in fitness, allowing for faster adaptation. This "long-term advantage" builds over multiple generations, eventually resulting in higher fitness of sexual types.  相似文献   

15.
Liu Y  Zeng ZB 《Genetical research》2000,75(3):345-355
Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the efficiency of a QTL mapping study. A general statistical method using mixture model procedures and the EM algorithm is developed for mapping QTL from various cross designs of multiple inbred lines. The general procedure features three cross design matrices, W, that define the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies the genetic model used in multiple line crosses. By appropriately specifying W matrices, the statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate specification for the D matrix, the method can be used to analyse different kinds of cross populations, such as F2 backcross, four-way cross and mixed crosses (e.g. combining backcross and F2). Simulation studies were conducted to explore the properties of the method, and confirmed its applicability to diverse experimental designs.  相似文献   

16.
Using genetic markers to directly estimate male selection gradients   总被引:3,自引:0,他引:3  
We present an analysis of Raphanus raphanistrum and simulations illustrating the utility of directly estimating male phenotypic selection gradients using genetic markers. The method offers a much more refined characterization of selection than attempting to assign paternity to individual progeny. Our analysis of R. raphanistrum reveals selection on remarkably fine features of floral morphology, including anther exsertion, that were opaque to previous approaches. The new results also undermine a previous conclusion that selection on wild radish floral morphology acts primarily through female fitness. Simulation results show that selection gradients on the order of beta = 0.1-0.2 can be readily detected with allozyme markers in moderate-sized (< 200 paternal individuals) populations. Highly polymorphic (e.g., microsatellite) markers will likely detect fine scale selection (beta < 0.1) in larger populations (> or = 400 individuals). Increased progeny sample size, by sampling either additional maternal families or more progeny per maternal parent, partly compensates for low exclusion probability. Increasing the number of possible fathers without changing progeny sample size decreases the ability to detect selection, especially at lower exclusion probabilities. Sampling only some male genotypes reduces the power to detect selection and biases (underestimates) the magnitude of the selection gradient estimate.  相似文献   

17.
Assigning Linkage Haplotypes from Parent and Progeny Genotypes   总被引:2,自引:1,他引:1       下载免费PDF全文
A. Nejati-Javaremi  C. Smith 《Genetics》1996,142(4):1363-1367
Given the genotypes of parents and progeny, their haplotypes over several or many linked loci can be easily assigned by listing the allele type at each locus along the haplotype known to be from each parent. Only a small number (5-10) of progeny per family is usually needed to assign the parental and progeny haplotypes. Any gaps left in the haplotypes may be filled in from the assigned haplotypes of relatives. The process is facilitated by having multiple alleles at the loci and by using more linked loci in the haplotype and with more progeny from the mating. Crossover haplotypes in the progeny can be identified by their being unique or uncommon, and the crossover point can often be detected if the locus linkage map order is known. The haplotyping method applies to outbreeding populations in plants, animals and man, as well as to traditional experimental crosses of inbred lines. The method also applies to half-sib families, whether the genotypes of the mates are known or unknown. The haplotyping procedure is already used in linkage analysis but does not seem to have been published. It should be useful in teaching and in genetic applications of haplotypes.  相似文献   

18.
M. Kirkpatrick  D. Lofsvold    M. Bulmer 《Genetics》1990,124(4):979-993
We present methods for estimating the parameters of inheritance and selection that appear in a quantitative genetic model for the evolution growth trajectories and other "infinite-dimensional" traits that we recently introduced. Two methods for estimating the additive genetic covariance function are developed, a "full" model that fully fits the data and a "reduced" model that generates a smoothed estimate consistent with the sampling errors in the data. By decomposing the covariance function into its eigenvalues and eigenfunctions, it is possible to identify potential evolutionary changes in the population's mean growth trajectory for which there is (and those for which there is not) genetic variation. Algorithms for estimating these quantities, their confidence intervals, and for testing hypotheses about them are developed. These techniques are illustrated by an analysis of early growth in mice. Compatible methods for estimating the selection gradient function acting on growth trajectories in natural or domesticated populations are presented. We show how the estimates for the additive genetic covariance function and the selection gradient function can be used to predict the evolutionary change in a population's mean growth trajectory.  相似文献   

19.
H W Deng 《Genetics》1998,150(2):945-956
Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of inbreeding in outcrossing populations. By simulations, the statistical properties of the estimation under a common form of inbreeding (sib mating) are investigated under a range of biologically plausible situations. The efficiencies of different degrees of inbreeding and two different experimental designs of estimation are also investigated. We found that estimation using the total genetic variation in the inbred generation is generally more efficient than employing the genetic variation among the mean of inbred families, and that higher degree of inbreeding employed in experiments yields higher power for estimation. The simulation results of the magnitude and direction of estimation bias under variable or epistatic mutation effects may provide a basis for accurate inferences of deleterious mutations. Simulations accounting for environmental variance of fitness suggest that, under full-sib mating, our extension can achieve reasonably well an estimation with sample sizes of only approximately 2000-3000.  相似文献   

20.
Non-equivalent expression of alleles at a locus results in genomic imprinting. In this article, a statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci (iQTL) underlying complex traits is developed based on experimental crosses of inbred line species in backcross populations. The joint likelihood function is composed of four component likelihood functions with each of them derived from one of four backcross families. The proposed approach models genomic imprinting effect as a probability measure with which one can test the degree of imprinting. Simulation results show that the model is robust for identifying iQTL with various degree of imprinting ranging from no imprinting, partial imprinting to complete imprinting. Under various simulation scenarios, the proposed model shows consistent parameter estimation with reasonable precision and high power in testing iQTL. When a QTL shows Mendelian effect, the proposed model also outperforms traditional Mendelian model. Extension to incorporate maternal effect is also given. The developed model, built within the maximum likelihood framework and implemented with the EM algorithm, provides a quantitative framework for testing and estimating iQTL involved in the genetic control of complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号