首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency and characteristics of B lymphocyte lineage cells in neonatal murine liver and spleen were studied during the first 10 days after birth. These were distinguished as B cells with surface IgM (slgM), immediate precursors of B cells (pre-B cells) lacking slgM but containing micron-heavy chains of IgM, and earlier precursors that did not synthesize immunoglobulin but could be detected with monoclonal 14.8 antibody. Experiments were also done to relate these to cells capable of clonal proliferation in mitogen-containing semisolid agar cultures and cells that acquire this function only after preculture in liquid medium. Newborn liver contained large numbers of early precursors as well as pre-B cells, and culture studies revealed that a majority of the colony-forming B cells present at that time were slg-. Adherent accessory cells in newborn liver suspensions facilitated the maturation of these into functional B cells in vitro. At most ages, however, numbers of slg+ B cells detected in that tissue were surprisingly low. Possible explanations for this include a rapid exit of newly formed B cells and their immediate precursors from liver and/or a high rate of abortive lg gene rearrangements during the neonatal period. In contrast, whereas the spleen contained early precursors and pre-B cells at birth, these cells steadily declined in number with age as the numbers of slgM+ B cells increased. Adherent cells in liver but not spleen of immunodeficient CBA/N mice suppressed B lymphocyte formation in semisolid or liquid cultures. These observations document population dynamics in B lineage cells during a critical period of development.  相似文献   

2.
Hematopoietic stem cells (HSCs) isolated from mouse fetal liver, like adult HSCs, are Thy-1lo Lin- Sca-1+. Donor-derived V gamma 3+ T cells were detected in fetal thymic lobes repopulated in vitro with fetal liver HSCs, but not in those with adult bone marrow HSCs. Single clonogenic fetal HSCs gave rise to thymic progeny that include V gamma 3+, other gamma delta+, and alpha beta+ T cells. No V gamma 3+ T cells were detected in adult thymus injected intrathymically with either fetal or adult HSCs. These results support the hypothesis that only fetal HSCs have the capacity to differentiate into V gamma 3+ T cells in the fetal thymic microenvironment and that the developmental potential of HSCs may change during ontogeny.  相似文献   

3.
We describe an assay system that allows precursor cells, uncommitted for heavy and light chain immunoglobulin expression, to develop into B lymphocytes that can differentiate to antibody-producing cells. Some precursors have the immunoglobulin loci in germ-line configuration. Approximately 200-1500 precursor cells are present in one fetal liver by day 12 of gestation; they express the surface marker AA4.1. Most precursors do not express the B220 marker. Commitment to heavy chain immunoglobulin expression occurs after an average of two cell division; commitment to light chain expression takes place after two additional rounds of division. DNA analysis from the progeny of single precursor cells shows that: (i) most B220- precursor cells have not completed D-J rearrangement (9/11) and some were in germ line configuration (4/11); and (ii) most B220+ precursor cells exhibit two D-J rearrangements (4/5 samples). These experiments define two types of B-lymphocyte precursor cells in fetal liver: the first, B220+ AA4.1+, acquires the capacity to respond to mitogens only after 5 days in culture, and does not have productive V-D-J rearrangements but might exhibit two stable D-J rearrangements; the second, B220- AA4.1+, acquires the capacity to respond to mitogens only after 9 days in culture and can be in germ-line configuration in the Ig loci, and undergoes rearrangement of heavy and light chain genes in vitro. Both precursor types require interaction with stromal cells before becoming responsive to interleukin 7.  相似文献   

4.
The size and specificity of plaque-forming cell precursors (PFC) in murine fetal liver, neonatal, and adult spleen were studied in an adoptive transfer system. In this system, anti-4-hydroxy-3-iodo-5-nitrophenylacetic acid (anti-NIP) and anti-2,4,6-trinitrobenzene sulfonic acid (anti-TNP) direct PFC are generated from bone marrow-derived (B) cell precursors in fetal liver between 17 and 20 days of gestation and in 6- or 14-day neonatal spleen. PFC generated from fetal liver and neonatal and adult spleen cells are specific in that they lyse either NIP-coupled SRBC or TNP-coupled SRBC but not both. The generation of specific anti-NIP and anti-TNP PFC from precursors in fetal liver is primarily independent of antigenic stimulation. In contrast, the anti-NIP and anti-TNP responses generated from neonatal and adult spleen are antigen dependent. Both high-avidity PFC (detected with SRBC indicators coupled at low hapten density) and low-avidity PFC (detected with SRBC coupled at high hapten density) are generated from fetal liver and neonatal spleen cells; however, the proportion of high-avidity PFC precursors in adult spleen is at least threefold greater than in fetal liver or neonatal spleen. Analysis by velocity sedimentation indicates that most high-avidity PFC precursors are small lymphocytes in fetal liver, medium lymphocytes in 6-day neonatal spleen, and small lymphocytes in 14-day-old and adult spleen. Low-avidity PFC precursors are primarily medium-sized lymphocytes in fetal liver and 6-day neonatal spleen. In 14-day-old and adult spleen almost all high- and low-avidity PFC precursors are small lymphocytes. The results are discussed in terms of relative changes in the pool sizes of these lymphocyte populations.  相似文献   

5.
Developmental regulation of the intrathymic T cell precursor population   总被引:4,自引:0,他引:4  
The maturation potential of CD4-8- thymocytes purified from mice of different developmental ages was examined in vivo after intrathymic injection. As previously reported, 14-day fetal CD4-8- thymocytes produced fewer CD4+ than CD8+ progeny in peripheral lymphoid tissues, resulting in a CD4+:CD8+ ratio of less than or equal to 1.0. In contrast, adult CD4-8- thymocytes generated CD4+ or CD8+ peripheral progeny in the proportions found in the normal adult animal (CD4+:CD8+ = 2 to 3). Here we have shown that CD4-8- precursor cells from the 17-day fetal thymus also produced peripheral lymphocytes with low CD4+:CD8+ ratios. Precursors from full term fetuses produced slightly higher CD4+:CD8+ ratios (1.1-1.6) and precursors from animals three to 4 days post-birth achieved CD4+:CD8+ ratios intermediate between those produced by fetal and adult CD4-8- thymocytes. Parallel changes in the production of alpha beta TCR+ peripheral progeny were observed. Fetal CD4-8- thymocytes generated fewer alpha beta TCR+ progeny than did adult CD4-8- thymocytes. However, peripheral lymphocytes arising from either fetal or adult thymic precursors showed similar proportions of gamma delta TCR+ cells. The same pattern of progeny was observed when fetal CD4-8- thymocytes matured in an adult or in a fetal thymic stromal environment. In contrast to fetal thymic precursors, fetal liver T cell precursors resembled adult CD4-8- thymocytes by all parameters measured. These results suggest that fetal thymic precursors are intrinsically different from both adult CD4-8- thymocytes and fetal liver T cell precursors. Moreover, they lead to the hypothesis that the composition of the peripheral T cell compartment is developmentally regulated by the types of precursors found in the thymus. A model is proposed in which migration of adult-like precursors from the fetal liver to the thymus approximately at birth triggers a transition from the fetal to the adult stages of intrathymic T cell differentiation.  相似文献   

6.
In the present study the capacity of early fetal B cells to produce Ig was investigated. It is shown that B cells from fetal liver, spleen, and bone marrow (BM) can be induced to produce IgM, IgG, IgG4, and IgE, but not IgA, in response to IL-4 in the presence of anti-CD40 mAb or cloned CD4+ T cells. Even splenic B cells from a human fetus of only 12 wk of gestation produced these Ig isotypes. IFN-alpha, IFN-gamma, and transforming growth factor-beta inhibited IL-4-induced IgE production in fetal B cells, as described for mature B cells. The majority of B cells in fetal spleen expressed CD5 and CD10 and greater than 99% of B cells in fetal BM were CD10+. Highly purified CD10+, CD19+ immature B cells and CD5+, CD19+ B cells could be induced to produce Ig, including IgG4 and IgE, in similar amounts as unseparated CD19+ B cells. Virtually all CD19+ cells still expressed CD10 after 12 days of culture. However, the IgE-producing cells at the end of the culture period were found in the CD19-,CD10- cell population, suggesting differentiation of CD19+,CD10+ B cells into CD19-,CD10- plasma cells. Pre-B cells are characterized by their lack of expression of surface IgM (sIgM). Only 30 to 40% of BM B cells expressed sIgM. However, in contrast to sIgM+,CD10+,CD19+ immature B cells, sorted sIgM-,CD10+,CD19+ pre-B cells failed to differentiate into Ig-secreting cells under the present culture conditions. Addition of IL-6 to these cultures was ineffective. Taken together, these results indicate that fetal CD5+ and CD10+ B cells are mature in their capacity to be induced to Ig isotype switching in vitro as soon as they express sIgM.  相似文献   

7.
The population dynamics of granulopoietic cells, B-lineage cells, and T lymphocytes were analyzed by immunofluorescence in mouse hemopoietic tissues as a function of age. Mac-1+ myeloid cells were present on day 11 of gestation in the liver, where they peaked shortly after birth and declined subsequently. Waves of myeloid population growth began in spleen and bone marrow by days 15 and 19, respectively. Mac-1+ cells increased in number to relatively low plateau levels in spleen by the 3rd wk after birth, whereas in the bone marrow higher plateau levels were reached around 3 mo of age. The 14.8 monoclonal antibody was utilized as one marker of B-lineage precursor cells. 14.8+ cells were detected in the liver on day 11 of gestation, reached peak numbers during the first week after birth and decreased thereafter. On day 15 and 19, 14.8+ cells were found in spleen and bone marrow, respectively, and progressively increased in numbers to reach plateau levels in both sites by 3 mo of age. Mu+ pre-B cells appeared in significant numbers in the 13-day fetal liver, reached a peak shortly after birth, and disappeared from the liver by the end of the second postnatal week. Pre-B cells were found in the spleen and bone marrow on days 15 and 19, respectively. In the spleen pre-B cells reached peak values at birth and disappeared 2 wk later. In spite of the sequential appearance of mu+ pre-B cells in fetal liver, spleen, and bone marrow, their sIgM+ B cell progeny appeared in all these hemopoietic tissues on day 17 of gestation. In the liver, sIgM+ B cells reached their peak at birth and declined thereafter. In the spleen and bone marrow, B cells increased to plateau levels between 1 and 4 mo of age. Thy-1.2+ T cells were relatively late acquisitions in all three hemopoietic tissues. Finally, the expression of the 14.8 antigen by mu+ cells was examined as a function of gestational age. While pre-B cells from day-13 fetuses had no detectable 14.8 antigen, the antigen was weakly expressed on the vast majority of the mu+ pre-B cells by day 17 of gestation. Newborn liver cells expressing 14.8 antigen were found to include a small proportion of cells with peroxidase+ granules. Thus, demonstration of rearrangement and expression of immunoglobulin genes may be required for precise identification of cells of B lineage early in ontogeny.  相似文献   

8.
We have examined human B lymphocytes at different stages of differentiation for the expression of surface receptors for the C3d fragment of complement. C3d receptors (C3dR) were identified by indirect immunofluorescence using the HB-5 monoclonal antibody, which recognizes a 145,000 m.w. C3dR molecule on B lymphocytes. Pre-B and immature B cells from fetal bone marrow and liver did not express C3dR, whereas a small subpopulation (25%) of B cells in fetal spleen were C3dR+. Approximately 50% of the B cells in adult bone marrow were C3dR+, whereas the more mature B cells in the blood of newborns and adults and in peripheral lymphoid tissue of adults uniformly expressed the C3dR. Activated B cells responsive to T cell-derived differentiation factors were C3dR+, whereas plasma cells rarely expressed C3dR. T cells, NK cells, erythrocytes, and myelomonocytic cells did not express detectable surface C3dR. These results suggest that in hematopoietic and lymphoid tissues, the expression of C3dR is a specific feature of relatively mature lymphoid cells of B lineage.  相似文献   

9.
We have examined natural killer (NK) cells, B cells and myelomonocytic cells at different stages of differentiation for the expression of surface C3b receptors (C3bR). Receptor presence was detected using affinity-purified F(ab')2 anti-C3bR antibodies in indirect immunofluorescence assays. NK cells, identified in fetal and adult tissues by the monoclonal antibody HNK-1, were C3bR- except for infrequent C3bR+ HNK-1+ cells in some blood samples. NK cells were not induced to express C3bR by exposure to interferon, target cells, or phorbol myristate acetate. B cells gradually acquired the ability to express C3bR with maturity: 15% of large pre-B cells were C3bR+, 35 to 48% of small pre-B, 60 to 80% of immature B, and 99% of mature B cells. Mature plasma cells were rarely C3bR+. Myelomonocytic cells acquire C3bR relatively late during their development, with neutrophils beginning to express C3bR during the band stage of differentiation. All adult blood myelomonocytic lineage cells, identified by the monoclonal antibody MMA and by morphology, were C3bR+.  相似文献   

10.
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.  相似文献   

11.
Presence of mast cell precursors in the yolk sac of mice   总被引:3,自引:0,他引:3  
Concentration of mast-cell precursors in hematopoietic tissues of mouse embryos was evaluated by a limiting dilution method. Cells from yolk sacs, livers, and bodies of (WB x C57BL/6)F1 (hereafter called WBB6F1)- +/+ embryos were injected directly into the skin of adult WBB6F1-W/Wv mice which were genetically depleted of tissue mast cells. Concentration of mast-cell precursors was calculated from the proportion of injection sites at which mast cells did not appear. Since the concentration of mast-cell precursors in the yolk sac was about 30 times as great as that of embryonic body at Day 9.5 of the pregnancy, the mast-cell precursors seemed to be generated within the yolk sac. The concentration in the yolk sac reached the maximum level at Day 11, and then dropped markedly at Day 13. In contrast, mast-cell precursors increased from Day 11 to Day 15 in the fetal liver. As a result, the concentration of 11-day yolk sacs was comparable to that of 15-day fetal liver. Although intravenous injection of 15-day fetal liver cells (2 x 10(6)) rescued the general mast-cell depletion of WBB6F1-W/Wv mice, the intravenous injection of the same number of 11-day yolk sac cells did not rescue it. In contrast with fetal livers, yolk sacs scarcely contained hematopoietic stem cells which were measured by spleen colony formation. Therefore, the mast-cell precursors of the yolk sac may not originate from such stem cells.  相似文献   

12.
13.
G E Wu  C J Paige 《The EMBO journal》1986,5(13):3475-3481
The immunoglobulin heavy chain variable region (VH) genes of the mouse have been categorized into families based upon sequence homology. Utilizing the RNA colony blot assay we have determined the expression of eight of these families in B cell colonies derived from either surface immunoglobulin positive (sIg+) adult spleen B cells or sIg- fetal liver pre-B cells. We demonstrate, based upon the analysis of greater than 6000 individual colonies, that VH gene usage is a characteristic of the mouse strain studied. C57BL/6 mice most frequently (45%) utilize family VHJ558, the largest VH family, whereas BALB/c mice most frequently (22%) utilize family VH7183, the most JH proximal family in BALB/c mice. Moreover, colonies derived from sIg- fetal liver derived precursors show similar patterns, suggesting that selection based on exogenous antigen is not an important parameter in determining VH gene family usage.  相似文献   

14.
The expression of Qa-2 on functional lymphocytes was investigated in vitro and in vivo by using a monoclonal anti-Qa-2 antibody. In vitro treatment of T cells with antibody and complement demonstrated that T cells mediating help or delayed-type hypersensitivity for anti-SRBC responses were Qa-2+. In addition, cytotoxic T cells and either their precursors or cells involved in their generation were Qa-2+, as were anti-HGG suppressor T cells. Panning techniques were also used to show that secondary suppressor T cells were Qa-2+ and that there may be heterogeneity in suppressor T cells defined by Qa-2 expression. In vivo treatment of mice with anti-Qa-2 resulted in decrease in immune responsiveness seen by i) prolongation of skin grafts with either H-2D or I-A differences, ii) suppression of delayed-type hypersensitivity, and iii) inhibition of T cell-mediated suppression. Finally, IgG, but not IgM, anti-body-forming cells were Qa-2+.  相似文献   

15.
Fetal liver stroma consists of different cell populations. We found that the liver of 17- and 20-day rat fetuses contained skeletal muscle precursors that expressed MyoD. In primary cultures of liver cells from 15-, 17- and 20-day fetuses, spontaneous myotube formation was observed. The antigenic profile of these myogenic elements assayed by immunocytochemistry and PCR unambiguously indicated their skeletal muscle nature. Examination of major myogenic gene expression demonstrated that myogenic potencies cells from liver depended on the stage of fetal development cell cultivation. It was shown that fetal liver MSCs were capable of myotube formation in induction medium with 5-azacytidine. The results of our study show that 15- to 20-day prenatal rat liver contains mainly preexisting skeletal muscle precursors expressing MyoD and, probably, inducible muscle precursors.  相似文献   

16.
17.
Cytotoxic thymus-derived lymphocytes (CTL) generated in vitro by restimulating rat cells with Listeria antigen- (LMA) pulsed syngeneic accessory cells were characterized in respect to their surface membrane markers. LM-dependent CTL were devoid of detectable surface immunoglobulin (Ig) and receptors for the Fc region of rabbit IgG. Experiments with monoclonal antibodies to rat T cell markers revealed that these cytotoxic cells have the phenotypic profile W3/13+, W3/25-, MRC OX 8+. LM-dependent CTL also bind the monoclonal antibody, MRC OX 3, which recognizes an Ia-antigen-like determinant on rat cells. Although LM-dependent CTL lack the W3/25 marker, their generation depends on the cooperative interplay of W3/25+ and W3/25- T cells.  相似文献   

18.
Expression of aldolase isozyme mRNAs in fetal rat liver   总被引:3,自引:0,他引:3  
The regulation of aldolase isozyme expression during development was studied by measuring the concentrations of mRNAs coding for aldolase A and B subunits in fetal and adult rat liver. Poly(A)-containing RNAs were extracted from livers at various stages of development of fetal rats, and the aldolase A and B subunits in the in vitro translation products of these RNAs were analyzed immunologically. The content of aldolase B mRNA in 14-day fetal liver, measured quantitatively as translational activity, was somewhat smaller than that of aldolase A mRNA; immunologically precipitable aldolase B and A amounted to 0.06% and 0.25% respectively, of the total products. Similar experiments using RNAs from fetuses at later stages, however, showed that aldolase B mRNA increased during development, whereas aldolase A mRNA decreased. In newborn rat liver, aldolase B constituted 0.56% of the total translation products of mRNA, but there was little detectable aldolase A (0.03%). The changes of aldolase mRNA levels were analyzed further by northern blot and dot-blot hybridization experiments using cloned aldolase A and B cDNAs. The content of aldolase B mRNA increased in the fetal stage, and that in newborn rat liver was about 12 times that in 14-day fetal liver. In contrast, the aldolase A mRNA content decreased during gestation and that in newborn rat liver was about one-eighth of that in 14-day fetal liver. These observations suggest that the switch of aldolase isozyme expression in fetal liver is controlled by the levels of the respective mRNAs.  相似文献   

19.
Binding of CD154 to its receptor, CD40, provides costimulation for mature B cell activation and differentiation in response to Ag receptor signals. In mice, early B cell precursors express CD40, but its function at this stage is unknown. We examined the effects of CD40 ligation during B cell ontogeny in transgenic mice constitutively expressing CD154 on B cells (kappaEP-CD154). Precursors beyond pro-B cells were absent in adult bone marrow but were increased in the fetal liver. Newborn kappaEP-CD154 mice had largely increased numbers of peripheral B cells, which were CD154+, and that 36 h after birth expressed high surface levels of CD23 and MHC class II, resembling activated mature B cells. Nevertheless, kappaEP-CD154 mice were hypogammaglobulinemic, indicating that the expanded population of apparently activated B cells was nonfunctional. Further analysis revealed that soon after birth, kappaEP-CD154 mice-derived B cells became CD5+/Fas+, after which progressively decreased in the periphery in a CD154-CD40-dependent manner. These results indicate that CD40 ligation during B cell ontogeny induces negative selection characterized by either hyporesponsiveness or an arrest in maturation depending on the time of analysis and the anatomic site studied.  相似文献   

20.
We have investigated the phenotypic and functional characteristics of murine pre-B cells obtained in semisolid and liquid culture with stem cell factor (SCF) and interleukin 7 (IL-7). Both serum-supplemented and serum-deprived culture conditions were used. The source of bone marrow cells was either normal mice (CD1 and C3H) or the lupus strain of mice MRL/Ipr and its congenic strain MRL/+. SCF (100 ng/ml) and IL-7 (250 ng/ml) supported murine B cell proliferation in vitro from all the murine strains analyzed both in serum-supplemented and serum-deprived conditions. Maximal colony growth was observed in both cases when the factors were used in combination. The growth factors alone induced some colony growth in serum-supplemented cultures but were either ineffective or had modest activity in serum-deprived cultures. Cells harvested from the colonies or generated in liquid cultures and stimulated with SCF + IL-7 in the absence of serum had almost exclusively a pre-B cell phenotype (BP-1+, B220+, slg-, CD4-, CD8-, Mac-1, RB-6-). Both the maximal colony growth in semisolid culture and the maximal number of cells in liquid culture were observed at day 12–14. At this time, the pre-B cells failed to differentiate further and started to die. Pre-B cells generated in vitro were, however, capable of differentiating in vivo. SCID mice injected with 2 × 106 pre-B cells had readily detectable serum levels of IgM (54 ± 26 m?g/ml) and IgG (60 ± 95 m?g/ml) at 4 weeks and 6 weeks posttransplantation, respectively. Mature B and T cells of the donor major histocompatibility complex type were detected in the SCID mice at sacrifice 14 weeks posttransplantation. These data indicate that purified (>80% BP-1+) populations of functional pre-B cells can be grown from murine bone marrow of normal mice as well as of lupus mice in serum-deprived cultures stimulated with SCF and IL-7. These cultures, therefore, provide a highly enriched source of pre-B cells but also contain T cell precursors that differentiate upon adoptive transfer into SCID mice. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号