首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.  相似文献   

2.
The Cbl adapter proteins typically function to down-regulate activated protein tyrosine kinases and other signaling proteins by coupling them to the ubiquitination machinery for degradation by the proteasome. Cbl proteins bind to specific tyrosine-phosphorylated sequences in target proteins via the tyrosine kinase-binding (TKB) domain, which comprises a four-helix bundle, an EF-hand calcium-binding domain, and a non-conventional Src homology-2 domain. The previously derived consensus sequence for phosphotyrosine recognition by the Cbl TKB domain is NXpY(S/T)XXP (X denotes lesser residue preference), wherein specificity is conferred primarily by residues C-terminal to the phosphotyrosine. Cbl is recruited to and phosphorylated by the insulin receptor in adipose cells through the adapter protein APS. APS is phosphorylated by the insulin receptor on a C-terminal tyrosine residue, which then serves as a binding site for the Cbl TKB domain. Using x-ray crystallography, site-directed mutagenesis, and calorimetric studies, we have characterized the interaction between the Cbl TKB domain and the Cbl recruitment site in APS, which contains a sequence motif, RA(V/I)XNQpY(S/T), that is conserved in the related adapter proteins SH2-B and Lnk. These studies reveal a novel mode of phosphopeptide interaction with the Cbl TKB domain, in which N-terminal residues distal to the phosphotyrosine directly contact residues of the four-helix bundle of the TKB domain.  相似文献   

3.
Src Homology (SH2) domains play critical roles in signaling pathways by binding to phosphotyrosine (pTyr)-containing sequences, thereby recruiting SH2 domain-containing proteins to tyrosine-phosphorylated sites on receptor molecules. Investigations of the peptide binding specificity of the SH2 domain of the Src kinase (Src SH2 domain) have defined the EEI motif C-terminal to the phosphotyrosine as the preferential binding sequence. A subsequent study that probed the importance of eight specificity-determining residues of the Src SH2 domain found two residues which when mutated to Ala had significant effects on binding: Tyr beta D5 and Lys beta D3. The mutation of Lys beta D3 to Ala was particularly intriguing, since a Glu to Ala mutation at the first (+1) position of the EEI motif (the residue interacting with Lys beta D3) did not significantly affect binding. Hence, the interaction between Lys beta D3 and +1 Glu is energetically coupled. This study is focused on the dissection of the energetic coupling observed across the SH2 domain-phosphopeptide interface at and around the +1 position of the peptide. It was found that three residues of the SH2 domain, Lys beta D3, Asp beta C8 and AspCD2 (altogether forming the so-called +1 binding region) contribute to the selection of Glu at the +1 position of the ligand. A double (Asp beta C8Ala, AspCD2Ala) mutant does not exhibit energetic coupling between Lys beta D3 and +1 Glu, and binds to the pYEEI sequence 0.3 kcal/mol tighter than the wild-type Src SH2 domain. These results suggest that Lys beta D3 in the double mutant is now free to interact with the +1 Glu and that the role of Lys beta D3 in the wild-type is to neutralize the acidic patch formed by Asp beta C8 and AspCD2 rather than specifically select for a Glu at the +1 position as it had been hypothesized previously. A triple mutant (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) has reduced binding affinity compared to the double (Asp beta C8Ala, AspCD2Ala) mutant, yet binds the pYEEI peptide as well as the wild-type Src SH2 domain. The structural basis for such high affinity interaction was investigated crystallographically by determining the structure of the triple (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) mutant bound to the octapeptide PQpYEEIPI (where pY indicates a phosphotyrosine). This structure reveals for the first time contacts between the SH2 domain and the -1 and -2 positions of the peptide (i.e. the two residues N-terminal to pY). Thus, unexpectedly, mutations in the +1 binding region affect binding of other regions of the peptide. Such additional contacts may account for the high affinity interaction of the triple mutant for the pYEEI-containing peptide.  相似文献   

4.
5.
Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.  相似文献   

6.
Lu N  Guarnieri DJ  Simon MA 《The EMBO journal》2004,23(5):1089-1100
Two tyrosine kinases, Src64 and Tec29, regulate the growth of actin rich-ring canals in the Drosophila ovary. We have shown previously that Src64 directs the localization of Tec29 to ring canals, but the mechanism underlying this process was unknown. Here, we show that Tec29 localizes to ring canals via its Src homology 3 (SH3) and Src homology 2 (SH2) domains. Tec29 activity is required for its own ring canal localization, suggesting that a phosphotyrosine ligand for the SH2 domain is generated by Tec29 itself. Src64 regulates this process by phosphorylating Y677 within the kinase domain of Tec29, an event required for Tec29 activation. We also show that the pleckstrin homology (PH) domain of Tec29 has dual functions in mediating Src64 regulation. In the absence of Src64, the PH domain prevents Tec29 ring canal localization. In the presence of Src64, it enhances membrane targeting of Tec29 by a PI(3,4,5)P(3)-mediated mechanism. In the absence of its PH domain, Tec29 constitutively localizes to ring canals, but still requires Src64 for full activation.  相似文献   

7.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

8.
Liu BA  Engelmann BW  Nash PD 《FEBS letters》2012,586(17):2597-2605
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.  相似文献   

9.
The adaptor protein APS is a substrate of the insulin receptor and couples receptor activation with phosphorylation of Cbl to facilitate glucose uptake. The interaction with the activated insulin receptor is mediated by the Src homology 2 (SH2) domain of APS. Here, we present the crystal structure of the APS SH2 domain in complex with the phosphorylated tyrosine kinase domain of the insulin receptor. The structure reveals a novel dimeric configuration of the APS SH2 domain, wherein the C-terminal half of each protomer is structurally divergent from conventional, monomeric SH2 domains. The APS SH2 dimer engages two kinase molecules, with pTyr-1158 of the kinase activation loop bound in the canonical phosphotyrosine binding pocket of the SH2 domain and a second phosphotyrosine, pTyr-1162, coordinated by two lysine residues in beta strand D. This structure provides a molecular visualization of one of the initial downstream recruitment events following insulin activation of its dimeric receptor.  相似文献   

10.
Shc is an SH2 domain protein that is tyrosine phosphorylated in cells stimulated with a variety of growth factors and cytokines. Once phosphorylated, Shc binds the Grb2-Sos complex, leading to Ras activation. Shc can interact with tyrosine-phosphorylated proteins by binding to phosphotyrosine in the context of an NPXpY motif, where pY is a phosphotyrosine. This is an unusual binding site for an SH2 domain protein whose binding specificity is usually controlled by residues carboxy terminal, not amino terminal, to the phosphotyrosine. Recently we identified a second region in Shc, named the phosphotyrosine interaction (PI) domain, and we have found it to be present in a variety of other cellular proteins. In this study we used a dephosphorylation protection assay, competition analysis with phosphotyrosine-containing synthetic peptides, and epidermal growth factor receptor (EGFR) mutants to determine the binding sites of the PI domain of Shc on the EGFR. We demonstrate that the PI domain of Shc binds the LXNPXpY motif that encompasses Y-1148 of the activated EGFR. We conclude that the PI domain imparts to Shc its ability to bind the NPXpY motif.  相似文献   

11.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

12.
13.
Stein EG  Gustafson TA  Hubbard SR 《FEBS letters》2001,493(2-3):106-111
Grb7, Grb10 and Grb14 comprise a family of adaptor proteins that interact with numerous receptor tyrosine kinases upon receptor activation. Between the pleckstrin homology (PH) domain and the Src homology 2 (SH2) domain of these proteins is a region of approximately 50 residues known as the BPS (between PH and SH2) domain. Here we show, using purified recombinant proteins, that the BPS domain of Grb10 directly inhibits substrate phosphorylation by the activated tyrosine kinase domains of the insulin receptor and the insulin-like growth factor 1 (IGF1) receptor. Although inhibition by the BPS domain is dependent on tyrosine phosphorylation of the kinase activation loop, peptide competition experiments indicate that the BPS domain does not bind directly to phosphotyrosine. These studies provide a molecular mechanism by which Grb10 functions as a negative regulator of insulin- and/or IGF1-mediated signaling.  相似文献   

14.
C-terminal Src kinase (Csk) takes part in a highly specific, high affinity interaction via its Src homology 3 (SH3) domain with the proline-enriched tyrosine phosphatase PEP in hematopoietic cells. The solution structure of the Csk-SH3 domain in complex with a 25-residue peptide from the Pro/Glu/Ser/Thr-rich (PEST) domain of PEP reveals the basis for this specific peptide recognition motif involving an SH3 domain. Three residues, Ala 40, Thr 42 and Lys 43, in the SH3 domain of Csk specifically recognize two hydrophobic residues, Ile 625 and Val 626, in the proline-rich sequence of the PEST domain of PEP. These two residues are C-terminal to the conventional proline-rich SH3 domain recognition sequence of PEP. This interaction is required in addition to the classic polyproline helix (PPII) recognition by the Csk-SH3 domain for the association between Csk and PEP in vivo. NMR relaxation analysis suggests that Csk-SH3 has different dynamic properties in the various subsites important for peptide recognition.  相似文献   

15.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

16.
Src homology region 2(SH2) has been demonstrated to recognize phosphotyrosine site. To clarify the precise mechanism of the recognition, we developed in vitro binding assay system using EGF receptor and SH2/SH3 region of phospholipase C(PLC) gamma 1. Phosphorylated EGF receptor bound to immobilized SH2/SH3 of PLC gamma 1 in Sepharose beads, while nonphosphorylated EGF receptor did not bind. In SH2 domain of PLC gamma 1, there are several highly conserved amino acid sequences that are common in a variety of SH2-containing proteins. Especially the eight amino acid sequence, G(S/T)FLVR(E/D)S is highly conserved in these proteins. We synthesized several peptides related to these sequences and examined the effect of peptides on the binding of EGF receptor to SH2 of PLC gamma 1. P1, GSFLVRES was the most effective inhibitor to suppress the binding. P2, GSFLVAES in which one amino acid, arginine of P1 is substituted by alanine is still effective. But a peptide, P3, SFLVRE in which two amino acids are deleted from P1 did not inhibit markedly. Moreover, P1 peptide immobilized in Sepharose beads also bound phosphorylated EGF receptor. These data suggest that highly conserved amino acid sequence GSFLVRES is the minimum essential unit to recognize tyrosine phosphorylated site.  相似文献   

17.
The tyrosine kinase Src upregulates the activity of the N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) and tyrosine phosphorylation of this receptor is critical for induction of NMDAR-dependent plasticity of synaptic transmission. A binding partner for Src within the NMDAR complex is the protein PSD-95. Here we demonstrate an interaction of PSD-95 with Src that does not require the well-characterized domains of PSD-95. Rather, we show binding to Src through a 12-amino-acid sequence in the N-terminal region of PSD-95, a region not previously known to participate in protein-protein interactions. This region interacts directly with the Src SH2 domain. Contrary to typical SH2 domain binding, the PSD-95-Src SH2 domain interaction is phosphotyrosine-independent. Binding of the Src-interacting region of PSD-95 inhibits Src kinase activity and reduces NMDAR phosphorylation. Intracellularly administering a peptide matching the Src SH2 domain-interacting region of PSD-95 depresses NMDAR currents in cultured neurons and inhibits induction of long-term potentiation in hippocampus. Thus, the PSD-95-Src SH2 domain interaction suppresses Src-mediated NMDAR upregulation, a finding that may be of broad importance for synaptic transmission and plasticity.  相似文献   

18.
The negative regulation of T- or B-cell antigen receptor signaling by CD5 was proposed based on studies of thymocytes and peritoneal B-1a cells from CD5-deficient mice. Here, we show that CD5 is constitutively associated with phosphotyrosine phosphatase activity in Jurkat T cells. CD5 was found associated with the Src homology 2 (SH2) domain containing hematopoietic phosphotyrosine phosphatase SHP-1 in both Jurkat cells and normal phytohemagglutinin-expanded T lymphoblasts. This interaction was increased upon T-cell receptor (TCR)-CD3 cell stimulation. CD5 co-cross-linking with the TCR-CD3 complex down-regulated the TCR-CD3-increased Ca2+ mobilization in Jurkat cells. In addition, stimulation of Jurkat cells or normal phytohemagglutinin-expanded T lymphoblasts through TCR-CD3 induced rapid tyrosine phosphorylation of several protein substrates, which was substantially diminished after CD5 cross-linking. The CD5-regulated substrates included CD3zeta, ZAP-70, Syk, and phospholipase Cgammal but not the Src family tyrosine kinase p56(lck). By mutation of all four CD5 intracellular tyrosine residues to phenylalanine, we found the membrane-proximal tyrosine at position 378, which is located in an immunoreceptor tyrosine-based inhibitory (ITIM)-like motif, crucial for SHP-1 association. The F378 point mutation ablated both SHP-1 binding and the down-regulating activity of CD5 during TCR-CD3 stimulation. These results suggest a critical role of the CD5 ITIM-like motif, which by binding to SHP-1 mediates the down-regulatory activity of this receptor.  相似文献   

19.
Death domain-containing receptors of the tumor necrosis factor (TNF)/nerve growth factor (NGF) family can induce apoptosis upon activation in many cellular systems. We show here that a conserved phosphotyrosine-containing motif within the death domain of these receptors can mediate inhibitory functions. The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1), SHP-2 and SH2-containing inositol phosphatase (SHIP) bound to this motif in a caspase-independent but cell-dependent manner. We also found that stimulation of death receptors disrupted anti-apoptosis pathways initiated (at least under certain conditions) by survival factors in neutrophils. In these cells, activation of the tyrosine kinase Lyn, an important anti-apoptotic event, was prevented as a consequence of death-receptor stimulation, most likely through association of the receptor with activated SHP-1. Thus, we provide molecular and functional evidence for negative signaling by death receptors.  相似文献   

20.
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号