首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.  相似文献   

2.
3.
4.
《Epigenetics》2013,8(9):987-993
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.  相似文献   

5.
6.
7.
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

8.
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.  相似文献   

9.
DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用   总被引:4,自引:0,他引:4  
郭磊  李慧  韩之明 《遗传》2010,32(8):762-768
体细胞核移植在农业应用、生产疾病模型动物、转基因家畜或产生人胚胎干细胞来治疗人类的疾病方面有巨大的应用潜力。虽然已经成功克隆出多种哺乳动物, 但该技术仍存在一些未解决的问题, 包括产生克隆动物的效率低和克隆动物的异常等。异常的表观遗传重编程是克隆胚胎发育失败的一个重要因素。文章重点论述了DNA甲基化、组蛋白修饰及其与克隆胚胎发育的关系。了解表观遗传调控机制有助于解决核移植技术中存在的问题, 有利于更好地应用这项技术。  相似文献   

10.
11.
12.
13.
14.
《Epigenetics》2013,8(6):896-909
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

15.
16.
17.
A 1 kb region of a maize H3 histone gene promoter has been analysed at a structural and functional level. Micrococcal nuclease digestion of isolated nuclei showed that the promoter region is organized into nucleosomes but a zone extending over approximately one nucleosome (20 to 230 bp upstream of the TATA box) displays remarkable accessibility to digestion. Three DNase I-hypersensitive sites were found within this zone at the vicinity of consensus sequences, some of which are already known to act ascis elements. This promoter region is able to direct faithful expression of the GUS reporter gene in meristematic tissues of transgenic tobacco plants.  相似文献   

18.
缺铁是世界范围内农业生产面临的严重问题,玉米通过分泌脱氧麦根酸(2’-deoxymugineic acid, DMA)吸收利用土壤中的难溶性铁。为探明玉米DMA分泌通道蛋白基因YS3的表达和调控机制,本文通过克隆获得长为2813 bp的YS3基因启动子,该序列含有大量TATA-box、CAAT-box等启动子基本元件,以及光响应、激素调控等多个顺式调控元件;构建YS3启动子驱动GUS基因的植物表达重组载体pCAMBIA-YS3GUS,利用农杆菌介导转化拟南芥,获得pYS3::GUS转基因植株,对转基因植株进行GUS组织化学染色,并通过石蜡切片技术对转基因植株进行组织观察,分析pYS3::GUS转基因植株中YS3基因启动子的活性。结果表明,YS3启动子主要驱动GUS基因在拟南芥根部表达,且主要集中在根部表皮细胞,机械损伤可激发YS3启动子活性,驱动GUS基因在损伤临近部位表达。本研究对于理解玉米DMA分泌的分子调控机理方法od3 gmaigensuan有重要意义。  相似文献   

19.
[目的]利用CRISPR/Cas9基因敲除系统在黑腹果蝇Drosophila melanogaster细胞中筛选并检测组蛋白甲基化修饰对蜕皮激素20-羟基蜕皮酮(20-hydroxyecdysone,20E)信号传导的调控.[方法]通过Flybase网站分析并总结黑腹果蝇组蛋白甲基转移酶及其修饰位点;将5个组蛋白甲基转...  相似文献   

20.
Histone modifications are ubiquitous processes involved in various cellular mechanisms. Systemic analysis of multiple chromatin modifications has been used to characterize various chromatin states associated with functional DNA elements, gene expression, and specific biological functions. However, identification of modular modification patterns is still required to understand the functional associations between histone modification patterns and specific chromatin/DNA binding factors. To recognize modular modification patterns, we developed a novel algorithm that combines nonnegative matrix factorization (NMF) and a clique-detection algorithm. We applied it, called LinkNMF, to generate a comprehensive modification map in human CD4 + T cell promoter regions. Initially, we identified 11 modules not recognized by conventional approaches. The modules were grouped into two major classes: gene activation and repression. We found that genes targeted by each module were enriched with distinguishable biological functions, suggesting that each modular pattern plays a unique functional role. To explain the formation of modular patterns, we investigated the module-specific binding patterns of chromatin regulators. Application of LinkNMF to histone modification maps of diverse cells and developmental stages will be helpful for understanding how histone modifications regulate gene expression. The algorithm is available on our website at biodb.kaist.ac.kr/LinkNMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号