首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used transformation of yeast mitochondria and homologous gene replacement to study features of the 613-base COX3 mRNA 5' untranslated leader (5'-UTL) required for translational activation by the protein products of the nuclear genes PET54, PET122, and PET494 in vivo. Elimination of the single AUG triplet in the 5'-UTL had no detectable effect on expression, indicating that activator proteins do not work by allowing ribosomes to bypass that AUG. Deletion of the entire 5'-UTL completely prevented translation, suggesting that the activator proteins do not function by antagonizing any other negative element in the 5'-UTL. Removal of the 15 terminal bases from the 5' end of the 5'-UTL did not block activator-dependent translation. The largest internal deletion that did not interfere with translation removed 125 bases from the upstream portion of the leader. However, two large deletions that blocked translation could be reverted to activator-dependent expression by secondary changes in the remaining 5'-UTL sequences, indicating that the original deletions had not removed the translational activator target but only deformed it. Taken together, the deletion mutations and revertants define a region of 151 bases (between positions -480 and -330 relative to the start codon) containing sequences that are sufficient for translational activation when modified slightly. Suppression of the respiratory phenotypes of two 5'-UTL mutations by overexpression of PET54, PET122, and PET494 indicated functional interactions between the leader and the three activator proteins. The mature COX3 mRNA is cleaved from a precursor immediately downstream of the preceding tRNAVal in a fashion resembling mRNA processing in vertebrate mitochondria. Our results indicate that the site of this cleavage in Saccharomyces cerevisiae is determined solely by the position of the tRNA.  相似文献   

2.
To examine normal and aberrant translation initiation in Saccharomyces cerevisiae mitochondria, we fused the synthetic mitochondrial reporter gene ARG8m to codon 91 of the COX2 coding sequence and inserted the chimeric gene into mitochondrial DNA (mtDNA). Translation of the cox2(1-91)::ARG8m mRNA yielded a fusion protein precursor that was processed to yield wild-type Arg8p. Thus mitochondrial translation could be monitored by the ability of mutant chimeric genes to complement a nuclear arg8 mutation. As expected, translation of the cox2(1-91)::ARG8m mRNA was dependent on the COX2 mRNA-specific activator PET111. We tested the ability of six triplets to function as initiation codons in both the cox2(1-91)::ARG8m reporter mRNA and the otherwise wild-type COX2 mRNA. Substitution of AUC, CCC or AAA for the initiation codon abolished detectable translation of both mRNAs, even when PET111 activity was increased. The failure of these mutant cox2(1-91)::ARG8m genes to yield Arg8p demonstrates that initiation at downstream AUG codons, such as COX2 codon 14, does not occur even when normal initiation is blocked. Three mutant triplets at the site of the initiation codon supported detectable translation, with efficiencies decreasing in the order GUG, AUU, AUA. Increased PET111 activity enhanced initiation at AUU and AUA codons. Comparisons of expression, at the level of accumulated product, of cox2(1-91)::ARG8m and COX2 carrying these mutant initiation codons revealed that very low-efficiency translation can provide enough Cox2p to sustain significant respiratory growth, presumably because Cox2p is efficiently assembled into stable cytochrome oxidase complexes.  相似文献   

3.
We have changed the translation initiation codon of the COX2 mRNA of Saccharomyces cerevisiae from AUG to AUA, generating a mutation termed cox2-10. This mutation reduced translation of the COX2 mRNA at least five-fold without affecting the steady-state level of the mRNA, and produced a leaky nonrespiratory growth phenotype. To address the question of whether residual translation of the cox2-10 mRNA was initiating at the altered initiation codon or at the next AUG codon downstream (at position 14), we took advantage of the fact that the mature coxll protein is generated from the electrophoretically distinguishable coxII precursor by removal of the amino-terminal 15 residues, and that this processing can be blocked by a mutation in the nuclear gene PET2858. We constructed a pet2858, cox2-10 double mutant strain using a pet2858 allele from our mutant collection. The double mutant accumulated low levels of a polypeptide which comigrated with the coxII precursor protein, not the mature species, providing strong evidence that residual initiation was occurring at the mutant AUA codon. Residual translation of the mutant mRNA required the COX2 mRNA-specific activator PET111. Furthermore, growth of cox2-10 mutant strains was sensitive to alterations in PET111 gene dosage: the respiratory-defective growth phenotype was partially suppressed in haploid strains containing PET111 on a high-copy-number vector, but became more severe in diploid strains containing only one functional copy of PET111.  相似文献   

4.
L. S. Folley  T. D. Fox 《Genetics》1991,129(3):659-668
We have used a generally applicable strategy for gene replacement in yeast mitochondria to mutate the translation initiation codon of the COX3 gene from AUG to AUA. The mutation, cox3-1, substantially reduced, but did not eliminate, translation of cytochrome c oxidase subunit III (coxIII). Strains bearing the mutation exhibited a leaky (partial) nonrespiratory growth phenotype and a reduced incorporation of radiolabeled amino acids into coxIII in vivo in the presence of cycloheximide. Hybridization experiments demonstrated that the mutation had little or no effect on levels of the COX3 mRNA. Residual translation of the cox3-1 mutant mRNA was dependent upon the three nuclearly coded mRNA-specific activators PET494, PET54 and PET122, known from previous studies to work through a site (or sites) upstream of the initiation codon to promote translation of the wild-type mRNA. Furthermore, respiratory growth of cox3-1 mutant strains was sensitive to decreased dosage of genes PET494 and PET122 in heterozygous mutant diploids, unlike the growth of strains carrying wild-type mtDNA. Some residual translation of the cox3-1 mRNA appeared to initiate at the mutant AUA codon, despite the fact that the 610-base 5'-mRNA leader contains numerous AUA triplets. We conclude that, while AUG is an important component of the COX3 translation initiation site, the site probably is also specified by other sequence or structural features.  相似文献   

5.
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.  相似文献   

6.
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.  相似文献   

7.
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.  相似文献   

8.
The protein specified by the Saccharomyces cerevisiae nuclear gene PET111 specifically activates translation of the mitochondrially coded mRNA for cytochrome c oxidase subunit II (Cox2p). We found Pet111p specifically in mitochondria of both wild-type cells and cells expressing a chromosomal gene for a functional epitope-tagged form of Pet111p. Pet111p was associated with mitochondrial membranes and was highly resistant to extraction with alkaline carbonate. Pet111p was protected from proteolytic digestion by the mitochondrial inner membrane. Thus, it is exposed only on the matrix side, where it could participate directly in organellar translation and localize Cox2p synthesis by virtue of its functional interaction with the COX2 mRNA 5'-untranslated leader. We also found that Pet111p is present at levels limiting the synthesis of Cox2p by examining the effect of altered PET111 gene dosage in the nucleus on expression of a reporter gene, cox2::ARG8(m), that was inserted into mitochondrial DNA. The level of the reporter protein, Arg8p, was one-half that of wild type in a diploid strain heterozygous for a pet111 deletion mutation, whereas it was increased 2.8-fold in a strain bearing extra copies of PET111 on a high-copy plasmid. Thus, Pet111p could play dual roles in both membrane localization and regulation of Cox2p synthesis within mitochondria.  相似文献   

9.
We have used mutational and revertant analysis to study the elements of the 54-nucleotide COX2 5'-untranslated leader involved in translation initiation in yeast mitochondria and in activation by the COX2 translational activator, Pet111p. We generated a collection of mutants with substitutions spanning the entire COX2 5'-UTL by in vitro mutagenesis followed by mitochondrial transformation and gene replacement. The phenotypes of these mutants delimit a 31-nucleotide segment, from -16 to -46, that contains several short sequence elements necessary for COX2 5'-UTL function in translation. The sequences from -16 to -47 were shown to be partially sufficient to promote translation in a foreign context. Analysis of revertants of both the series of linker-scanning alleles and two short deletion/insertion alleles has refined the positions of several possible functional elements of the COX2 5'-untranslated leader, including a putative RNA stem-loop structure that functionally interacts with Pet111p and an octanucleotide sequence present in all S. cerevisiae mitochondrial mRNA 5'-UTLs that is a potential rRNA binding site.  相似文献   

10.
Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.  相似文献   

11.
12.
J. J. Mulero  T. D. Fox 《Genetics》1993,133(3):509-516
PET111 is a yeast nuclear gene specifically required for the expression of the mitochondrial gene COX2, encoding cytochrome c oxidase subunit II (coxII). Previous studies have shown that PET111 activates translation of the COX2 mRNA. To map the site of PET111 action we have constructed, in vitro, genes coding for chimeric mRNAs, introduced them into mitochondria by transformation and studied their expression. Translation of a chimeric mRNA with the 612-base 5'-untranslated leader of the COX3 mRNA fused precisely to the structural gene for the coxII-precursor protein is independent of PET111, but does require a COX3 mRNA-specific translational activator known to work on the COX3 5'-leader. This result demonstrates that PET111 is not required for any posttranslational step. Translation of a chimeric mRNA with the 54-base 5'-leader of the COX2 mRNA fused precisely to the structural gene for cytochrome c oxidase subunit III was dependent on PET111 activity. These results demonstrate that PET111 acts specifically at a site in the short COX2 5'-leader to activate translation of downstream coding sequences.  相似文献   

13.
Summary The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of Mr 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (Mr 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.  相似文献   

14.
P. Haffter  T. W. McMullin    T. D. Fox 《Genetics》1990,125(3):495-503
Translation of the Saccharomyces cerevisiae mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the products of at least three nuclear genes, PET122, PET494 and PET54. pet122 mutations that remove 24-67 amino acid residues from the carboxyterminus of the gene product were found to be suppressed by unlinked nuclear mutations. These unlinked suppressors fail to suppress both a pet122 missense mutation and a complete pet122 deletion. One of the suppressor mutations causes a heat-sensitive nonrespiratory growth phenotype in an otherwise wild-type strain and reduces translation of all mitochondrial gene products in cells grown at high temperature. This suppressor maps to a newly identified gene on chromosome XV termed PET123. The sequence of a DNA fragment carrying PET123 contains one major open reading frame encoding a basic protein of 318 amino acids. Inactivation of the chromosomal copy of PET123 by interruption of this open reading frame causes cells to become rho- (sustain large deletions in their mtDNA). This phenotype is characteristic for null alleles of genes whose products are essential for general mitochondrial protein synthesis. Thus our data strongly suggest that the PET123 protein is a component of the mitochondrial translation apparatus that interacts directly with the coxIII-mRNA-specific translational activator PET122.  相似文献   

15.
16.
Zeng X  Hourset A  Tzagoloff A 《Genetics》2007,175(1):55-63
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.  相似文献   

17.
18.
The mRNA for CspA, a major cold shock protein in Escherichia coli, contains an unusually long (159 bases) 5' untranslated region (5'-UTR), and its stability has been shown to play a major role in cold shock induction of CspA. The 5'-UTR of the cspA mRNA has a negative effect on its expression at 37 degrees C but has a positive effect upon cold shock. In this report, a series of cspA-lacZ fusions having a 26- to 32-base deletion in the 5'-UTR were constructed to examine the roles of specific regions within the 5'-UTR in cspA expression. It was found that none of the deletion mutations had significant effects on the stability of mRNA at both 37 and 15 degrees C. However, two mutations (Delta56-86 and Delta86-117) caused a substantial increase of beta-galactosidase activity at 37 degrees C, indicating that the deleted regions contain a negative cis element(s) for translation. A mutation (Delta2-27) deleting the highly conserved cold box sequence had little effect on cold shock induction of beta-galactosidase. Interestingly, three mutations (Delta28-55, Delta86-117, and Delta118-143) caused poor cold shock induction of beta-galactosidase. In particular, the Delta118-143 mutation reduced the translation efficiency of the cspA mRNA to less than 10% of that of the wild-type construct. The deleted region contains a 13-base sequence named upstream box (bases 123 to 135), which is highly conserved in cspA, cspB, cspG, and cspI, and is located 11 bases upstream of the Shine-Dalgarno (SD) sequence. The upstream box might be another cis element involved in translation efficiency of the cspA mRNA in addition to the SD sequence and the downstream box sequence. The relationship between the mRNA secondary structure and translation efficiency is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号