首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical step in cancer growth and metastasis is the dissolution of the extracellular matrix surrounding the malignant tumor, which leads to tumor cell invasion and dissemination. Type I collagen degradation involves the initial action of collagenolytic matrix metalloproteinases (MMP-1, -8, and -13) activated by MMP-3 (stromelysin-1). The role of interactive matrix serine proteinases (MSPs), including tumor-associated trypsinogens, has been unclear in collagenolysis. Now, we provide evidence that the major isoenzyme of human tumor-associated trypsinogens, trypsin-2, can directly activate three collagenolytic proMMPs as well as proMMP-3. These proMMP activations are inhibited by tumor-associated trypsin inhibitor (TATI). Furthermore, we demonstrate that trypsin-2 efficiently degrades native soluble type I collagen, which can be inhibited by TATI. However, cell culture studies showed that trypsin-2 transfection into the HSC-3 cell line did not result in MMP-1, -3, -8, and -13 activation but affected MMP-3 and -8 production at the protein level. These findings indicate that human trypsin-2 can be regarded as a potent tumor-associated matrix serine protease capable of being the initial activator of the collagenolytic MMP activation network as well as directly attacking type I collagen.  相似文献   

2.
Time-course changes in rosmarinic acid (RA) formation and activities of tyrosine aminotransferase (TAT) isoforms were examined in Anchusa officinalis suspension cultures. Three TAT isoforms (TAT-1, TAT-3, TAT-4) were resolved by Mono-Q anion-exchange column chromatography. The proportion of the TAT-3 activity within the total TAT activity remained high regardless of the growth stage of the cultured cells. TAT-1 activity was positively correlated with the rate of RA biosynthesis during linear growth stage of the culture cycle, while TAT-4 activity was rapidly induced in conjunction with transfer to fresh medium coincident with a transient increase in RA synthesis. Based on these results, as well as the substrate specificity of each TAT isoform, it was concluded that both TAT-1 and TAT-4 are closely involved in RA biosynthesis. TAT-1 controls conversion of tyrosine to 4-hydroxyphenyl pyruvate, and TAT-4 acts by participating in the formation of tyrosine and phenylalanine via prephenate.Abbreviations PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid  相似文献   

3.
Three activities of tyrosine aminotransferase (TAT; EC 2.6.1.5), the enzyme which catalyzes the first step of the tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid), have been extensively purified from cell suspension cultures of Anchusa officinalis L. and subsequently characterized. TAT-1, TAT-2, and TAT-3 differ slightly in native molecular weights (180,000-220,000) and are composed of subunits (4 X 43,000 for TAT-1 and 4 X 56,000 for TAT-2). All three enzymes show a pronounced preference for L-tyrosine over other aromatic amino acids, but TAT-2 and TAT-3 can also effectively utilize L-aspartate or L-glutamate as a substrate. For amino acceptor cosubstrates, either oxaloacetate or alpha-ketoglutarate can be utilized equally well by TAT-1, while the former is the most effective alpha-keto acid for TAT-2 and the latter is the best for TAT-3. All the TAT activities display high pH optima (8.8-9.6), and are inhibited by the tyrosine metabolite 3,4-dihydroxyphenyllactate. TAT-2 and TAT-3 are also inhibited by rosmarinic acid.  相似文献   

4.
Human pancreatic cationic trypsinogen has been purified to homogenity from an acetone powder of pancreatic tissue. After an initial ion exchange chromatography step on sulfopropyl (SP)-Sephadex at pH 2.6, cationic trypsinogen was separated from the majority of trypsin activity by passage through an affinity column of lima bean trypsin inhibitor-agarose at high ionic strength. The zymogen was then further purified by affinity chromatography on the same material at low ionic strength. Highly purified trypsinogen was resolved from containing chymotrypsinogen by ion exchange chromatography on SP-Sephadex at pH 6.0. The purified zymogen was shown to be homogeneous by polyacrylamide gel electrophoresis at pH 2.1 and at pH 4.3 as well as by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The autoactivation of human trypsinogen was investigated at pH 5.6 and at pH 8.0. The rate of autoactivation of the human zymogen is rapid at pH 5.6 and is maximal in approximately 1 mM Ca2+. These results are in marked contrast to those previously reported for autoactivation of bovine trypsinogen, which is extremely slow at pH 5.6 and which shows a dependence on at least 50 mM Ca2+ for maximum rate of activation (MacDonald, M. R., AND Kunitz, M. (1941) J. Gen. Physiol. 25, 53-73).  相似文献   

5.
Unlike bovine cationic trypsin, rat anionic trypsin retains activity at high pH. This alkaline stability has been attributed to stabilization of the salt bridge between the N-terminal Ile16 and Asp194 by the surface negative charge (Soman K, Yang A-S, Honig B, Fletterick R., 1989, Biochemistry 28:9918-9926). The formation of this salt bridge controls the conformation of the activation domain in trypsin. In this work we probe the structure of rat trypsinogen to determine the effects of the surface negative charge on the activation domain in the absence of the Ile16-Asp194 salt bridge. We determined the crystal structures of the rat trypsin-BPTI complex and the rat trypsinogen-BPTI complex at 1.8 and 2.2 A, respectively. The BPTI complex of rat trypsinogen resembles that of rat trypsin. Surprisingly, the side chain of Ile16 is found in a similar position in both the rat trypsin and trypsinogen complexes, although it is not the N-terminal residue and cannot form the salt bridge in trypsinogen. The resulting position of the activation peptide alters the conformation of the adjacent autolysis loop (residues 142-153). While bovine trypsinogen and trypsin have similar CD spectra, the CD spectrum of rat trypsinogen has only 60% of the intensity of rat trypsin. This lower intensity most likely results from increased flexibility around two conserved tryptophans, which are adjacent to the activation domain. The NMR spectrum of rat trypsinogen contains high field methyl signals as observed in bovine trypsinogen. It is concluded that the activation domain of rat trypsinogen is more flexible than that of bovine trypsinogen, but does not extend further into the protein core.  相似文献   

6.
We have previously shown, in 15N NMR studies of the enzyme's active site histidine residue, that boronic acid inhibitors can form two distinct types of complexes with alpha-lytic protease. Inhibitors that are structural analogs of good alpha-lytic protease substrates form transition-state-like tetrahedral complexes with the active site serine whereas those that are not form complexes in which N epsilon 2 of the active site histidine is covalently bonded to the boron of the inhibitor. This study also demonstrated that the serine and histidine adduct complexes exhibit quite distinctive and characteristic low-field 1H NMR spectra [Bachovchin, W. W., Wong, W. Y. L., Farr-Jones, S., Shenvi, A. B., & Kettner, C. A. (1988) Biochemistry 27, 7689-7697]. Here we have used low-field 1H NMR diagnostically for a series of boronic acid inhibitor complexes of trypsin and trypsinogen. The results show that H-D-Val-Leu-boroArg and Ac-Gly-boroArg, analogs of good trypsin substrates, form transition-state-like serine adducts with trypsin, whereas the nonsubstrate analog inhibitors boric acid, methane boronic acid, butane boronic acid, and triethanolamine borate all form histidine adducts, thereby paralleling the previous results obtained with alpha-lytic protease. However, with trypsinogen, Ac-Gly-boroArg forms predominantly a histidine adduct while H-D-Val-Leu-boroArg forms both histidine and serine adducts, with the histidine adduct predominating below pH 8.0 and the serine adduct predominating above pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca2+-dependence. Even though the two trypsinogens are approximately 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mm Ca2+- conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.  相似文献   

8.
One of ostrich (Struthio camelus) trypsinogen genes was cloned from pancreatic cDNA. Its amino acid sequence compared to known trypsin sequences from other species shows high identity and suggests that it is a member of the phylogenetically anionic trypsinogen I subfamily. After cytoplasmic over expression in Escherichia coli and renaturation, the activation properties of ostrich trypsinogen were studied and compared to those of human trypsinogen 1 (also called as human cationic trypsinogen). Ostrich trypsinogen undergoes bovine enterokinase activation and autoactivation much faster than human trypsinogen 1 and exhibits on a synthetic substrate a somewhat higher enzymatic activity than the latter one. The most interesting property of ostrich trypsin is its relatively fast autolysis that can be explained via a mechanism different from the common mechanism for rat and human 1 trypsins. The latter proteases have a site, Arg117-Val118, where the autolysis starts and then goes on in a zipper-like fashion. This is absent from ostrich trypsin. Instead it has a couple of cleavage sites within regions 67-98, including two unusual ones, Arg76-Glu77 and Arg83-Ser84. These appear to be hydrolysed fast in a non-consecutive manner. Such an autolysis mechanism could not be inhibited by a single-site mutation which in humans is proposed to lead to pancreatitis.  相似文献   

9.
Proteins with trypsin-like immunoreactivity (first detected by a specific immunoenzymatic assay) were isolated from CAPAN-1 and CFPAC-1 cell culture-conditioned media by chromatography on an immunoadsorbent prepared with a polyclonal antibody directed against trypsin 1. The adsorbed proteins were devoid of free trypsin activity but trypsin activity was present after enterokinase activation demonstrating that the immunoreactive trypsin present in cell supernatants corresponds to trypsinogens. When characterised by Western blotting using a monoclonal antibody directed against human trypsin 1 two protein bands corresponding to trypsinogen 1 (23 kDa) and trypsinogen 2 (25 kDa) gave a positive reaction. These results demonstrate the presence of trypsinogens 1 and 2 in CAPAN-1 and CFPAC-1 cells and in their culture-conditioned media.  相似文献   

10.
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable - possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. Our first objective was to determine, in compartments outside of the intestine (plasma, peritoneal fluid, brain, heart, liver, and lung) protease activities and select protease concentrations after hemorrhagic shock (2 hours ischemia, 2 hours reperfusion). Our second objective was to determine whether inhibition of proteases in the intestinal lumen with a serine protease inhibitor (ANGD), a process that improves survival after shock in rats, reduces the protease activities distant from the intestine. To determine the protease activity, plasma and peritoneal fluid were incubated with small peptide substrates for trypsin-, chymotrypsin-, and elastase-like activities or with casein, a substrate cleaved by multiple proteases. Gelatinase activities were determined by gelatin gel zymography and a specific MMP-9 substrate. Immunoblotting was used to confirm elevated pancreatic trypsin in plasma, peritoneal fluid, and lung and MMP-9 concentrations in all samples after hemorrhagic shock. Caseinolytic, trypsin-, chymotrypsin-, elastase-like, and MMP-9 activities were all significantly (p<0.05) upregulated after hemorrhagic shock regardless of enteral pretreatment with ANGD. Pancreatic trypsin was detected by immunoblot in the plasma, peritoneal space, and lungs after hemorrhagic shock. MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock.  相似文献   

11.
Trypsin or Tumor associated trypsin (TAT) activation of Protease-activated receptor 2 (PAR-2) promotes tumor cell proliferation in gastrointestinal cancers. The role of the trypsin/PAR-2 network in esophageal adenocarcinoma (EA) development has not yet been investigated. The aim of this study is to investigate the role of trypsin/PAR-2 activation in EA tumorogenesis and therapy. We found that esophageal adenocarcinoma cells (EACs) and Barrett’s Metaplasia (BART) expressed high levels of type 3 extra-pancreatic trypsinogen (PRSS3), a novel type of TAT. Activity of secreted trypsin was detected in cultured media from EA OE19 and OE33 cultures but not from BART culture. Surface PAR-2 expression in BART and EACs was confirmed by both flow cytometry and immunofluorescence. Trypsin induced cell proliferation (∼ 2 fold; P<0.01) in all tested cell lines at a concentration of 10 nM. Inhibition of PAR-2 activity in EACs via the PAR-2 antagonist ENMD (500 µM), anti-PAR2 antibody SAM-11 (2 µg/ml), or siRNA PAR-2 knockdown, reduced cell proliferation and increased apoptosis by up to 4 fold (P<0.01). Trypsin stimulation led to phosphorylation of ERK1/2, suggesting involvement of MAPK pathway in PAR-2 signal transduction. Inhibition of PAR-2 activation or siRNA PAR-2 knockdown in EACs prior to treatment with 5 FU reduced cell viability of EACs by an additional 30% (P<0.01) compared to chemotherapy alone. Our data suggest that extra-pancreatic trypsinogen 3 is produced by EACs and activates PAR-2 in an autocrine manner. PAR-2 activation increases cancer cell proliferation, and promotes cancer cell survival. Targeting the trypsin activated PAR-2 pathway in conjunction with current chemotherapeutic agents may be a viable therapeutic strategy in EA.  相似文献   

12.
The formation of complexes between human trypsinogens and the basic pancreatic trypsin inhibitor is demonstrated by using affinity chromatography on Sepharose coupled to basic pancreatic trypsin inhibitor. This interaction indicates the pre-existence of the active site in human trypsinogens. This active site induces the proteolytic activity of the two zymogens which activate spontaneously at pH 5.6 and pH 8.0 before and after affinity chromatography. The effect of affinity-chromatography on trypsinogen spontaneous activation is not the same on trypsinogens 1 and 2. A striking difference appears between the activation of the two trypsinogens. In all cases, trypsinogen 1 autoactivates more rapidly than trypsinogen 2, except at pH 5.6 in the presence of 10 mM Ca2+, which inhibits the autoactivation of trypsinogen 1. The effect of inherent proteolytic activity of human trypsinogens is discussed in relation to pathological conditions of enterokinase deficiency and acute pancreatitis.  相似文献   

13.
Trypsinogen-1 and -2 are well-characterized enzymes that are expressed in the pancreas and also in several other tissues. Many cancers produce trypsinogen isoenzymes that differ from the pancreatic ones with respect to substrate specificity and isoelectric point. These tumor-associated trypsinogens play a pivotal role in cancer progression and metastasis. The differences between these and the pancreatic isoenzymes have been suggested to be caused by post-translational modification, either sulfation or phosphorylation of a tyrosine residue. We aimed to elucidate the cause of these differences. We isolated trypsinogens from pancreatic juice and conditioned medium from a colon carcinoma cell line. Intact proteins, and tryptic and chymotryptic peptides were characterized by electrospray ionization mass spectrometry. We also used immunoblotting with antibody against phosphotyrosine and N-terminal sequencing. The results show that pancreatic trypsinogen-1 and -2 are sulfated at Tyr154, whereas tumor-associated trypsinogen-2 is not. Detachment of a labile sulfogroup could be demonstrated by both in-source dissociation and low-energy collision-induced dissociation in a tandem mass spectrometer. Tyrosine sulfation is an ubiquitous protein modification occurring in the secretory pathway, but its significance is often underestimated due to difficulties in its analysis. Sulfation is an almost irreversible modification that is thought to regulate protein-protein interactions and the activity of proteolytic enzymes. We conclude that the previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are probably caused by sulfation of Tyr154 in pancreatic trypsinogens.  相似文献   

14.
Bovine enterokinase (enteropeptidase) activates trypsinogen to trypsin at pH 8.0. In the presence of chicken ovomucoid, a stable complex of ovomucoid-trypsin is produced, inactivating trypsin and eliminating autoactivation of trypsinogen. The molecular size of trypsin (24,000 Da) is increased twofold on forming the ovomucoid-trypsin complex (52,000 Da). Size-exclusion chromatography on a Toya Soda TSK G2000SW column in an HPLC system and with computer-assisted analyses gives a direct quantitative determination of the amount of substrate (trypsinogen) and product (ovomucoid-trypsin). The rate of disappearance of substrate is equal to the rate of formation of product in agreement with kinetic theory. The simultaneous determination of both rates increases the reliability of the assay. The HPLC assay has an extended linear range for the velocity of the activation process as a function of enzyme concentration. The assay is reliable and accurate for highly purified preparations, samples at different steps in the purification scheme, and for a direct assay of the intestinal contents. The assay should be useful in clinical analyses.  相似文献   

15.
Trypsin-mediated trypsinogen activation (autoactivation) facilitates digestive zymogen activation in the duodenum but may precipitate pancreatitis if it occurs prematurely in the pancreas. Autoactivation of human cationic trypsinogen is inhibited by a repulsive electrostatic interaction between the unique Asp218 on the surface of cationic trypsin and the conserved tetra-aspartate (Asp19-22) motif in the trypsinogen activation peptide (Nemoda, Z., and Sahin-Tóth, M. (2005) J. Biol. Chem. 280, 29645-29652). Here we describe that this interaction is regulated by chymotrypsin C (caldecrin), which can specifically cleave the Phe18-Asp19 peptide bond in the trypsinogen activation peptide and remove the N-terminal tripeptide. In contrast, chymotrypsin B, elastase 2A, or elastase 3A (proteinase E) are ineffective. Autoactivation of N-terminally truncated cationic trypsinogen is stimulated approximately 3-fold, and this effect is dependent on the presence of Asp218. Because chymotrypsinogen C is activated by trypsin, and chymotrypsin C stimulates trypsinogen activation, these reactions establish a positive feedback mechanism in the digestive enzyme cascade of humans. Furthermore, inappropriate activation of chymotrypsinogen C in the pancreas may contribute to the development of pancreatitis. Consistent with this notion, the pancreatitis-associated mutation A16V in cationic trypsinogen increases the rate of chymotrypsin C-mediated processing of the activation peptide 4-fold and causes accelerated trypsinogen activation in vitro.  相似文献   

16.
1. A cationic protease has been purified from the granule fraction of blood-donor leukocytes by a preparative method including precipitation by acetone and chromatography on Bio-Gel A 1.5 m, CM-Sephadex C-50 and Sephadex G-G-75. 2. The pH optimum against denatured bovine hemoglobin is 7.4. Gel chromatography indicated a molecular weight close to 23 000. 3. This neutral protease (EC 3.4.-.-) is able to split the synthetic esters Z-Ala-NPh and AcAla3OMe, its activity on the former substrate being 2.2 times greater than that of pancreatic elastase, on the latter the same. It differs crucially from pancreatic elastase in having small elastinolytic activity. 4. In cationic disk electrophoresis, neutral protease resolves into three protein bands with lower mobility than lysozyme: all bands exhibit esterolytic activity against 2-acetoxy-3-naphthoic acid o-toluidide, strongly suggesting that they represent isoenzymes. 5. The enzyme is completely inhibited by iPr2P-F, partially so by soybean trypsin inhibitor and Trasylol. Cysteine, EDTA and TosLysCH2Cl have no effect. 6. During chromatography on CM-Sephadex C-50 a more positively charged enzyme(s) was identified. This had hemoglobinolytic activity at pH 7.4 but only a small esterolytic effect on Z-Ala-NPh; it showed only traces of activity against AcAla3OMe.  相似文献   

17.
Two monoclonal antibodies (Mab) raised against human pancreatic trypsin 1, Mab G6 and A8, were previously isolated and characterized. The two Mab which recognize trypsinogen 1 are found to inhibit the activation of trypsinogen 1 by enterokinase. The inhibition of activation by the two Mab is concentration-dependent, rapid and virtually complete with Mab G6. Activation of trypsinogen 2 is totally inhibited by Mab G6, while Mab A8 has no effect on the activation of trypsinogen 2. The two monoclonal antibodies have opposite effects on the proteolytic activity of trypsin 1; Mab G6 increases proteolytic activity while Mab A8 inhibits trypsin activity by as much as 40%. This inhibition is concentration dependent but cannot account for the complete inhibition of activation of trypsinogen 1. Neither monoclonal antibody significantly inhibits the esterolytic activity of either form of human trypsin. Western-blot analysis of the reactivity of the two monoclonal antibodies with trypsinogens of various species shows that only Mab G6 cross-reacts with dog trypsinogen.  相似文献   

18.
Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.  相似文献   

19.
Amino acid sequence of human D of the alternative complement pathway   总被引:4,自引:0,他引:4  
The primary structure of human D, the serine protease activating the C3 convertase of the alternative complement pathway, has been deduced by sequencing peptides derived from various chemical (CNBr and o-iodosobenzoic acid) and enzymatic (trypsin, lysine protease, Staphylococcus aureus V8 protease, and chymotrypsin) cleavages. Carboxypeptidase A was also used to confirm the COOH-terminal sequence. The peptides were purified by high-pressure liquid chromatography. The proposed sequence of human D contains 222 amino acids and has a calculated molecular weight of 23 748. It exhibits a high degree of homology with other serine proteases, especially around the NH2-terminus as well as the three residues corresponding to the active-site His-57, Asp-102, and Ser-195 (chymotrypsinogen numbering). This sequence homology is highest (40%) with plasmin, intermediate (35%) with pancreatic serine proteases, such as elastase, trypsin, chymotrypsin, and kallikrein, and least (30%) with the serum enzymes thrombin and factor X. D, however, exhibits only minimal amino acid homology with the other sequenced complement serine proteases, Clr (25%) and Bb (20%). The substitution of a basic lysine for a neutral amino acid three residues NH2-terminal to the active-site serine as well as a small serine residue for a bulky aromatic amino acid at position 215 (chymotrypsinogen numbering) in the binding pocket may be important in determining the exquisite substrate specificity of D. The presence of His-40 which interacts with Asp-194 (chymotrypsinogen numbering) to stabilize other serine protease zymogens [Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T., & Xuong, N. H. (1970) Biochemistry 9, 1997] argues in favor of such a D precursor molecule.  相似文献   

20.
The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号