首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crop performance, nitrogen and water use in flooded and aerobic rice   总被引:11,自引:0,他引:11  
Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach yields of 70–80% of high-input flooded rice. To obtain insights into crop performance, water use, and N use of aerobic rice, a field experiment was conducted in the dry seasons of 2002 and 2003 in the Philippines. Cultivar Apo was grown under flooded and aerobic conditions at 0 and at 150 kg fertilizer N ha–1. The aerobic fields were flush irrigated when the soil water potential at 15-cm depth reached –30 kPa. A 15N isotope study was carried out in microplots within the 150-N plots to determine the fate of applied N. The yield under aerobic conditions with 150 kg N ha–1 was 6.3 t ha–1 in 2002 and 4.2 t ha–1 in 2003, and the irrigation water input was 778 mm in 2002 and 826 mm in 2003. Compared with flooded conditions, the yield was 15 and 39% lower, and the irrigation water use 36 and 41% lower in aerobic plots in 2002 and 2003, respectively. N content at 150 kg N ha–1 in leaves and total plant was nearly the same for aerobic and flooded conditions, indicating that crop growth under aerobic conditions was limited by water deficit and not by N deficit. Under aerobic conditions, average fertilizer N recovery was 22% in both the main field and the microplot, whereas under flooded conditions, it was 49% in the main field and 36% in the microplot. Under both flooded and aerobic conditions, the fraction of 15N that was determined in the soil after the growing season was 23%. Since nitrate contents in leachate water were negligible, we hypothesized that the N unaccounted for were gaseous losses. The N unaccounted for was higher under aerobic conditions than under flooded conditions. For aerobic rice, trials are suggested for optimizing dose and timing of N fertilizer. Also further improvements in water regime should be made to reduce crop water stress.  相似文献   

2.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

3.
The fate of 15N-labelled ammonium fertilizer applied once to six-year-old field-grown kiwifruit (Actinidia deliciosa Hayward) vines was measured over three years. The three main treatments were nitrogen (N) applied singularly at 100 or 200 kg N ha–1 in early spring (two weeks before bud burst) or split with 100 kg N ha–1 (unlabelled) in early spring and 100 kg N ha–1 (15N-labelled) ten weeks later. All N treatments were applied to vines with a history of either 50 or 200 kg N ha–1 yr–1. For three years after 15n application, components of the vines and soil (0–600 mm depth) were sampled at harvest in late autumn and the N and 15N contents determined.By the first harvest, all plant uptake of 15N had occurred and this represented 48–53% of the 15N applied. There was no significant effect of current N fertilizer treatment or of N history on 15N recovery by vines. Removal of 15N in harvested fruit was small at 5–6% in the first year and 8% over 3 years. After 2–3 years, most plant 15N occurred in the roots and this component declined only slowly over time. In contrast, there was a large temporal decline in 15N in above-ground plant components due to the annual removal in leaf fall and pruning. An associated experiment showed that when 15N-labelled prunings and leaves were mulched and returned to the soil, only about 9% was recovered by plants within 2 years. Almost all remaining mulched material had been immobilised into the soil organic N.In all treatments, about 20% of the added 15N remained in soil at the first harvest. This was almost entirely in organic fractions (<0.4% in inorganic N) and mostly in the surface 150-mm layer. The 15N content in soil changed little over time (from 20 to 17% between the first and third harvests respectively) and indicated that most of the N had been immobilised into stable humus forms.  相似文献   

4.
Recous  S.  Fresneau  C.  Faurie  G.  Mary  B. 《Plant and Soil》1988,112(2):205-214
Labelled urea or ammonium nitrate was applied to winter wheat growing on a loamy soil in Northern France. Two applications of fertilizer were given: 50 kg N ha–1 at tillering (early March) and 110 kg N ha–1 at the beginning of stem elongation (mid-April). The kinetics of urea hydrolysis, nitrification of ammonium and the disappearance of inorganic nitrogen were followed at frequent intervals. Inorganic nitrogen soon disappeared, mainly immobilized by soil microflora and absorbed by the crop. Net immobilization of fertilizer N occured at a very similar rate for urea and ammonium nitrate. Maximum immobilization (16 kg N ha1) was found at harvest for the first dressing and at anthesis for the second dressing (23 kg N ha1). During the nitrification period, the labelled ammonium pool was immobilized two to three times faster than the labelled nitrate pool. No significant net15N remineralization was found during the growth cycle.The actual denitrification and volatilization losses were probably more important than indicated from calculations made by extrapolation of fluxes measured over short intervals. However microbial immobilization was the most important of the processes which compete with plant uptake for nitrogen.  相似文献   

5.
We followed the movements of 15N-labelled nitrate additions into biomass and soil pools of experimental plots (15×15 m each) in a mid-successional beech-maple-birch-spruce forest in order to identify sinks for nitrate inputs to a forest ecosystem. Replicate plots (n=3) were spray-irrigated with either 28 or 56 kg N ha–1 year–1 using 15N-labelled nitric acid solutions (15N = 344 ) during four successive growing seasons (April–October). The 15N contents of foliage, bolewood, forests floor and mineral soil (0–5 cm) increased during the course of treatments. Mass balance calculations showed that one-fourth to one-third of the nitrate applied to forest plots was assimilated into and retained by above ground plant tissues and surface soil horizons at both rates of nitrate application. Plant and microbial assimilation were of approximately equal importance in retaining nitrate additions to this forest. Nitrate use among tree species varied, however, with red spruce showing lower rates of nitrate assimilation into foliage and bolewood than American beech and other deciduous species.  相似文献   

6.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

7.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

8.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

9.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

10.
A field incubation technique with acetylene to inhibit nitrification was used to estimate net N mineralization rates in some grassland soils through an annual cycle. Measurements were made on previously long-term grazed pastures on a silty clay loam soil in S.W. England which had background managements of +/– drainage and +/– fertilizer (200 kg N ha–1 yr–1). The effect of fertilizer addition on mineralization during the year of measurement was also determined. Small plots with animals excluded, and with herbage clipped and removed were used as treatment areas and measurements were made using an incubation period of 7 days at intervals of 7 or 14 days through the year. Soil temperature, moisture and mineral N contents were also determined. Mineralization rates fluctuated considerably in each treatment. Maximum daily rates ranged from 1.01 to 3.19 kg N ha–1, and there was substantial net release of N through the winter period (representing, on average, 27% of the annual release). Changes in temperature accounted for 35% of the variability but there was little significant effect of soil moisture. Annual net release of N ranged from 135 kg ha–1 (undrained soil, no previous or current fertilizer) to 376 (drained soil, +200 kg N ha–1 yr–1 previous and current fertilizer addition). Addition of fertilizer N to a previously unfertilized sward significantly increased the net release of N but there was no immediate effect of withholding fertilizer on mineralization during the year in which measurements were made.  相似文献   

11.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

12.
A simple N balance model was used to calculate fertilizer requirement for a target N uptake by maize. Nitrogen uptake from soil sources and target uptake of N with fertilizer N additions were obtained from fertilizer trials in Africa and Latin America. Most experiments had data for only one cropping period, although some from Latin America had data for four to six crops. The transfer coefficient of fertilizer N to the crop was adjusted to realize maximum recovery of fertilizer N under best methods of fertilizer application. The time constants of transfer of soil N to the crop were allowed to vary and were affected mainly by soil texture. Where 4 to 6 cropping periods were available good agreement between actual and predicted fertilizer N requirements was obtained. With this approach long-term fertilizer N requirements for 14 sites were predicted using first cropping period N uptake. This study showed that pools of organic N in more coarse-textured soils were usually smaller and declined more rapidly than in fine-textured soils. Labile organic N pools declined with time under all simulations, but approached equilibrium within 10 croppings seasons. Equilibrium N uptake from the soil organic N pool was predicted to be 31 kg ha–1 for the more coarse-textured soils and 36 kg ha–1 for the fine-textured soils. Long-term projections of fertilizer requirements using input data of the field experiments were reasonable, and effects of legume green manures and other amendments could be clearly evaluated.  相似文献   

13.
S. S. Malhi  M. Nyborg 《Plant and Soil》1984,77(2-3):193-206
Incubation and field experiments were conducted on the influence of thiourea in inhibiting nitrification of urea N, and subsequently on reducing over-winter losses of fallapplied N. Under incubation, most of the added urea placed in bands was nitritified within five or six weeks. However, thiourea when pelleted with urea (21 urea to thiourea by weight) reduced the amount of nitrification to less than one-half during the same period.In two uncropped field experiments in an early dry fall, the application of pelleted urea+thiourea (21) in bands resulted in almost complete inhibition of nitrification of urea for four weeks. In two other uncropped field experiments begun in June with the same fertilizer in bands, half or less of applied N appeared as nitrate after eight weeks. In 10 cropped field experiments with 56 kg N ha–1, urea+thiourea placed in bands depressed nitrification of fall-applied urea over the winter. By early May, the urea mixed into the soil in the previous fall was nearly all nitrified, while only one-half of the banded urea+thiourea was nitrified. The loss of mineral N by early May was 38% with urea mixed into the soil, but only 18% with bands of urea+thiourea.The 10 sites were cropped to spring barley. The increase in yield of grain or the increase in %N uptake from fertilier N was approximately only one-half as much with fall-applied urea mixed into the soil as compared to spring-applied urea added in the same way. Specifically, fall-applied mixed urea produced 930 kg ha–1 less grain yield and 32% less N uptake from fertilizer N than did mixed urea in spring. On fall-application there was some benefit from banding of urea or with mixing urea+thiourea pellets into the soil, but the banding of urea+thiourea pellets gave more benefit. Among the fall applications, banded urea+thiourea pellets produced 670 kg ha–1 more grain yield and 26% more N uptake in grain from fertilizer N than did urea mixed into the soil.  相似文献   

14.
Four cultivars of groundnut were grown in upland soil in Northeast Thailand to study the residual benefit of the stover to a subsequent maize crop. An N-balance estimate of the total residual N in the maize supplied by the groundnut was made. In addition three independent estimates were made of the residual benefits to maize when the groundnut stover was returned to the land and incorporated. The first estimate (Estimate 1) was an N-balance estimate. A dual labelling approach was used where 15N-labelled stover was added to unlabelled microplots (Estimate 2) or unlabelled stover was added to 15N-labelled soil microplots (Estimate 3). The nodulating groundnut cultivars fixed between 59–64% of their nitrogen (as estimated by the 15N isotope dilution method using non-nodulating groundnut as a non-fixing reference) producing between 100 and 130 kg N ha-1 in their stover. Although the following maize crop suffered from drought stress, maize grain N and dry weights were up to 80% and 65% greater respectively in the plots where the stover was returned as compared with the plots where the stover was removed. These benefits were comparable with applications of 75 kg N ha-1 nitrogen in the form of urea. The total residual N estimates of the contribution of the nodulated groundnut to the maize ranged from 16.4–27.5 kg N ha-1. Estimates of the residual N supplied by the stover and fallen leaves ranged from 11.9–21.3 kg N ha-1 using the N-balance method (Estimate 1), from 6.3–9.6 kg N ha-1 with the labelled stover method (Estimate 2) and from 0–11.4 kg N ha-1 with the labelled soil method. There was closest agreement between the two 15N based estimates suggesting that apparent added nitrogen interactions in these soils may not be important and that N balance estimates can overestimate the residual N in crops following legumes, even in very poor soils. This work also indicates the considerable ability of local groundnut cultivars to fix atmospheric nitrogen and the potential benefits from returning and incorporating legume residues to the soil in the upland cropping systems of Northeast Thailand. The applicability of the 15N methodology used here and possible reasons for the discrepancies between estimates 1, 2 and 3 are discussed.  相似文献   

15.
Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0–10, 10–20 and 20–30 cm). The mesh bags were collected after 12 months and we found that 590±70 kg ha–1 year–1 of pure mycelia was produced in spruce stands and 420±160 kg ha–1 year–1 in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20°C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8±0.9×103 kg ha–1 and in the mixed stands 5.8±1.1×103 kg ha–1 down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha–1 in spruce stands and 187 kg N ha–1 in mixed stands. The 13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The 13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The 15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.  相似文献   

16.
A pot and a lysimeter experiment were carried out to study the effects of inoculation of the roots of rice seedlings with R. capsulatus in combination with graded levels of nitrogen (N) fertilizer on growth and yield of the rice variety Giza 176. Inoculation increased all the measured growth parameters and yield attributes, but the statistically significant differences at all N levels tested were only those for plant dry weight, number of productive tillers, grain and straw yields. The absolute increases in grain yield of the pot experiment due to inoculation were 0.63, 0.93 and 1.22 ton ha–1 at 0, 47.6 and 95.2 kg N ha–1, respectively. The results suggest that inoculation along with 47.6 kg N ha–1 can save 50% of the nitrogen fertilizer needed for optimum G176 rice crop. However, inoculation along with 95.2 kg N ha–1 can increase grain yield by about 1.2 ton ha–1. This is probably the first reported evidence of a beneficial effect of phototrophic purple nonsulphur bacteria on rice growth and yield under flooded soil conditions.  相似文献   

17.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

18.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

19.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

20.
Denitrification losses from a poorly drained clayey loamy soil under natural pasture were measured over a two-year period using the acetylene inhibition technique. Plots received two different applications of fertilizer as calcium ammonium nitrate or cow slurry (a total of 145–290 kg N ha–1 in 1991 and 120–240 kg in 1992). In the first year, N losses in the mineral treatments were about 4 times greater than losses in the slurry treatments. In the second year losses in the slurry treatments increased in such a way that losses in the higher slurry application became similar to those for the two mineral treatments. Soil nitrate was the factor producing differences between treatments. In this way, N mineralization in periods between fertilizations coinciding with high soil water contents was responsible in the second year for the increase in N losses in the slurry treatments. Denitrification rates greater than 0.1 kg N ha–1 day–1 occurred at soil water contents > 33 % (air filled porosity < 26 %) and soil nitrate contents > 1 mg N kg–1 dry soil. Spring and autumn were the seasons of highest risk of denitrification because of N fertilizations coinciding with periods of soil saturation with water. Winter losses were low, but this is a period when there is a risk of denitrification in wetter seasons, particularly for a slurry application management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号