首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stemmet  M. C.  de Bruyn  J. A.  Zeeman  P. B. 《Plant and Soil》1962,17(3):357-364
Summary The uptake of C14O2 by the roots of intact tomato plants from solution containing Na2C14O3 was studied at different light intensities as well as in darkness.Where plants had previously been starved for CO2 for 12 hours, a higher rate of C14 uptake was observed than with plants which had been transferred directly from the soil to the radioactive solution.In general, the C14 content of the roots was slightly higher than that of the shoots. At light intensities under the compensation point and in darkness the C14 content of the shoots relative to the roots decreased. This was accompanied by release of C14O2 during respiration, indicating that the absorbed C14 was readily translocated upwards and released as C14O2 under these conditions. At light intensities above the compensation point no C14O2 was released.  相似文献   

2.
P. H. Jerie  A. R. Shaari  M. A. Hall 《Planta》1979,144(5):503-507
Isolated cotyledons of Phaseolus vulgaris L. cv. Canadian Wonder accumulated 14C2H4 (0.7–1 l l-1) from air to give partition coefficients of 1 to 4, which greatly exceeded the value obtained with steam killed cotyledons (0.05) and with water (0.11). After 14C2H4 treatment, 98% of the 14C in the tissue remained as 14C2H4. The labelled ethylene accumulated by cotyledons was released only slowly (1–10% h-1) either in an air stream or into toluene. Heating to 60°C for 2 h, but not freezing and thawing, caused the immediate release of 14C2H4 from the tissue. Propylene and vinyl chloride competitively inhibited the accumulation of 14C2H4.Cotyledons emanated endogenous ethylene at a very low rate but after heating (although not freezing and thawing) 13 nl of ethylene per g fresh mass were released within minutes. It was concluded that french bean cotyledons hold ethylene in a compartmented form in sufficient amount to account for at least 200 h of emanation.Abbreviation PPO diphenyloxazole  相似文献   

3.
Summary Fresh leguminous plant residues were incorporated into soil columns and incubated at 23°C for up to 20 weeks. The N released from specific fractions (foliage, stems, and roots) of each residue were monitored at specific time intervals. Relationships between organic carbon, total nitrogen, CN ratio, lipids, and lignin content of the plant materials and the cumulative amount of N mineralized in soil were investigated. Statistical analyses indicated that the rates of N mineralized were not significantly correlated with the organic C nor lipid content of the residues. However, the cumulative amount of N released was significantly correlated with the total N content of the plant material (r=0.93***). The percentage of organic N of the legumes mineralized in soil ranged from 15.9 to 76.0%. The relationship between the percentage of N released and the CN ratio of the plant material showed an inverse cuvilinear response (r= 0.88***). It was also evident that the composition of lignin in the residue influenced N mine-ralization rates of the leguminous organs incorporated into soil.There was a curvilinear relationship between the cumulative amount of N released from the residues and time of incubation. Nitrogen mineralization rates were described by first-order kinetics to estimate the N mineralization potential (N0), mineralization rate constant (k), and the time of incubation required to mineralize one-half of N0 (t1/2). The kinetic parameters were calculated by both the linear least squares (LLS) and nonlinear least squares (NLLS) transformations. The N0 values among the crop residues varied from –35 to 510 g Ng–1 soil. Statistical analyses revealed that the N0 values obtained by both LLS and NLLS methods were significantly correlated (r=0.93***). The mineralization rate constants (k) of the residues ranged from 0.045 to 0.325 week–1. The time of incubation required to mineralize one-half the nitrogen mineralization potential (t1/2) of the legumes incorporated into soil ranged from 2.1 to 15.4 weeks.  相似文献   

4.
The gases released on DF dissolution of a variety of samples have been studied by gas chromatography and high resolution mass spectrometry. Results on Apollo 12 samples confirm previous observations that CH4 and C2H6 are released as well as CD4, C2D4, C2D6 and higher deuterated hydrocarbons. The yields correlate with the total carbon content of the samples and the CH4 and C2H6 released may be regarded as indigenous while the deuterated products result from hydrolysis of carbide material. Dissolutions were also performed on five size fractions of sample 14240,5, ranging from >420 to <37 . The yields of CH4, CD4,20Ne and36Ar correlate with the surface area and therefore probably arise from solar wind implantation. Other deuterocarbons released include C2D4, C2D6, C3D6, C3D8 and C4D10. Preliminary pyrolysis results of these size differentiated samples confirmed the presence and surface correlation of the CH4,20Ne and36Ar. Dissolution of the 14148, 14156 and 14149 trench samples showed that their carbon chemistry and solar wind exposure are very similar to that of the 14240 SESC and Apollo 11 and 12 fines of high carbon content. Other interesting components released from the soil samples by DF include D2S, DCN and CS2.This paper is an amplified version of the comments made by Dr Holland during the discussions at the meeting on Lunar Analysis: Significance for Exobiology, held at College Park, Maryland, October 26–28, 1971.  相似文献   

5.
Goh  K.M.  Pamidi  J. 《Plant and Soil》2003,250(1):1-13
Although considerable progress has been made in relating extractable soil S to plant S availability, most of these studies determined the extractable soil S at the beginning of the experiment to use as an index of soil S status. This bears little or no relationship to the S taken up by plants during the entire growing season. The present study investigates the changes in extractable soil S with time and relates these to changes in plant S uptake. Six soils with different long-term fertiliser histories (0, 21, 42 kg of S as superphosphate ha–1 applied since 1952) and animal camping treatments (camp and non-camp) were used in two pot systems (with and without plants). Carrier-free 35SO4–S was added to the soils, to provide the information on the transformations of recently added S between the different extractable S forms in soils and whether these transformations could predict plant-available S. The soils were pre-conditioned and then transferred to the glasshouse, where one set of pots were planted with perennial ryegrass (Lolium perenne L.) while the other set was left uncropped. Periodic plant harvests and soil samplings at four weekly intervals were conducted over a period of 20 weeks to determine plant S uptake and amounts of extractable soil S and 35S forms using five extractants. Same extractions of soil S and 35S were conducted for the initial soils. Results showed that HI-reducible and total soil S extracted by CaCl2, KH2PO4 and by KCl at 40°C were utilised significantly by plants but not those extracted by NaHCO3 and NaOH extractants. However, after the 8th week, plants continued to take up S even though levels of S extracted from the soil by CaCl2, KH2PO4 and by KCl at 40°C remained low and unchanged. These results suggest that soil S taken up by plants after the 8th week period originated directly from the mineralisation of soil organic S from S pools other than those present in the extractable soil S forms. Similar results were shown by 35S data, thereby confirming the complexity of determining plant S availability based on soil S extraction methods.  相似文献   

6.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

7.
Summary Methods for labelling growing plants by exposing them to C14O2 under a cellulose acetate-butyrate canopy have been developed for laboratory and field use. The length of labelling ranged from 2 to 33 days and the C14O2 content of the atmosphere was automatically controlled. This made it possible to measure carbon assimilation by the plants, transfer of photosynthates beneath ground and respiration of the roots.In the laboratory, root respiration of wheat plants was measured by separating the above and beneath ground plant parts using a RTV rubber partition. Half to two thirds of the assimilated carbon was found above ground, 15 to 25 per cent in the roots and shoot bases below the partition and 17 to 25 per cent was lost by underground respiration. The variability of these proportions was related to the stage of maturity of the plants.On native grassland, the relative above and beneath ground productivity was 50 per cent. The time required for the photosynthates to reach the roots at various depths ranged from 1 to 5 days and the amount of material deposited in the roots changed with time and soil moisture content. The use of tubes inserted at various depths beneath the canopy permitted sampling of soil air for C14 and CO2 measurements. The soil C14O2 flux indicated that root respiration during 8 days accounted for 24 per cent of the labelled carbon translocated to the roots after a two days labelling period.  相似文献   

8.
The effect of microorganisms on the fate of Cd introduced into the soil as cadmium oxide (CdO) was investigated. Cadmium oxide (875 µg Cd per gram of soil) was added to -irradiated (sterile) and non-sterile soils. The soils were incubated for 90 days at 18 °C under aerobic conditions with moisture kept at 60% of water-holding capacity. Half of the samples in each treatment were supplemented with starch (0.5%, w/w) in order to stimulate microbial growth in the non-sterile soil. After various time intervals (7- or 10-day), soil samples from each treatment were extracted with deionized distilled water (ratio 1:40) or 0.25 M CaCl2 (ratio 1:5). The results indicated that during the incubation period the amount of Cd extracted from the non-sterile soil with either solvent was markedly lower than that extracted from the -irradiated sterile control. The addition of starch to the non-sterile soil reduced the concentration of Cd in the 0.25 M CaCl2 extracts without affecting the Cd-content in the water extracts. Short-term experiments in which Cd was added to the soil as a solution of Cd(NO3)2 indicated that irradiation did not affect the sorption of Cd to the soil. The addition of bacterial mass (1 mg of dry weight g–1 soil) decreased the amount of Cd extracted with water as well as that extracted with 0.25 M CaCl2. Under sterile conditions the solubility of CdO in soil extracts was higher than in the other extractants. The addition of glucose (0.5%, w/w) or a glucose/starch mixture (0.5%, w/w of each) to the sterile soil increased the amount of extractable Cd after a short incubation (18 h at 18 °C). The obtained results suggest that primarily physicochemical reactions are involved in dissolving CdO in the soil but that microbial activity may be responsible for the immobilization of the released metal.  相似文献   

9.
10.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

11.
The purpose of the present study was to assess atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) mineralization by indigenous microbial communities and to investigate constraints associated with atrazine biodegradation in environmental samples collected from surface soil and subsurface zones at an agricultural site in Ohio. Atrazine mineralization in soil and sediment samples was monitored as 14CO2 evolution in biometers which were amended with 14C-labeled atrazine. Variables of interest were the position of the label ([U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine), incubation temperature (25°C and 10°C), inoculation with a previously characterized atrazine-mineralizing bacterial isolate (M91-3), and the effect of sterilization prior to inoculation. In uninoculated biometers, mineralization rate constants declined with increasing sample depth. First-order mineralization rate constants were somewhat lower for [2-14C-ethyl]-atrazine when compared to those of [U-14C-ring]-atrazine. Moreover, the total amount of 14CO2 released was less with [2-14C-ethyl]-atrazine. Mineralization at 10°C was slow and linear. In inoculated biometers, less 14CO2 was released in [2-14C-ethyl]-atrazine experiments as compared with [U-14C-ring]-atrazine probably as a result of assimilatory incorporation of 14C into biomass. The mineralization rate constants (k) and overall extents of mineralization (P max ) were higher in biometers that were not sterilized prior to inoculation, suggesting that the native microbial populations in the sediments were contributing to the overall release of 14CO2 from [U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine. A positive correlation between k and aqueous phase atrazine concentrations (C eq ) in the biometers was observed at 25°C, suggesting that sorption of atrazine influenced mineralization rates. The sorption effect on atrazine mineralization was greatly diminished at 10°C. It was concluded that sorption can limit biodegradation rates of weakly-sorbing solutes at high solid-to-solution ratios and at ambient surface temperatures if an active degrading population is present. Under vadose zone and subsurface aquifer conditions, however, low temperatures and the lack of degrading organisms are likely to be primary factors limiting the biodegradation of atrazine.Abbreviations C eq solution phase atrazine concentration at equilibrium - C s amount of atrazine sorbed - CLA [2-14C-ethyl]-atrazine - k first-order mineralization rate constant - K d sorption coefficient - m slope - P max maximum amount of CO2 released - RLA [U-14C-ring]-atrazine  相似文献   

12.
Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earths forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO2 (pCO2) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO2, changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO2 and O3 on the inorganic C cycle in forest systems. Free air CO2 and O3 enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO2 and O3 interact to alter pCO2 and DIC concentrations in the soil. Ambient and elevated CO2 levels were 360±16 and 542±81 l l–1, respectively; ambient and elevated O3 levels were 33±14 and 49±24 nl l–1, respectively. Measured concentrations of soil CO2 and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO2 and were unaffected by elevated tropospheric O3. The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal 13C of soil pCO2 and DIC, as a mixing model showed that new atmospheric CO2 accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short-term ecosystem C sequestration.  相似文献   

13.

Background and aims

Rhizodeposition of plants is the most uncertain component of the carbon (C) cycle. By existing approaches the amount of rhizodeposition can only roughly be estimated since its persistence in soil is very short compared to other organic C pools. We suggest an approach to quantify rhizodeposition at the field scale by assuming a constant ratio between rhizodeposited-C to root-C.

Methods

Maize plants were pulse-labeled with 14CO2 under controlled conditions and the soil 14CO2 efflux was separated into root and rhizomicrobial respiration. The latter and the 14C activity remaining in the soil corresponded to total rhizodeposition. By relating rhizodeposited-14C to root-14C a rhizodeposition-to-root ratio of 0.56 was calculated. This ratio was applied to the root biomass C measured in the field to estimate rhizodeposition under field conditions.

Results

Maize allocated 298 kg C ha?1 as root-C and 166 kg C ha?1 as rhizodeposited-C belowground, 50 % of which were recovered in the upper 10 cm. The fate of rhizodeposits was estimated based on the 14C data, which showed that 62 % of total rhizodeposition was mineralized within 16 days, 7 % and 0.3 % was incorporated into microbial biomass and DOC, respectively, and 31 % was recovered in the soil.

Conclusions

We conclude that the present approach allows for an improved estimation of total rhizodeposition, since it accounts not only for the fraction of rhizodeposits remaining in soil, but also for that decomposed by microorganisms and released from the soil as CO2.  相似文献   

14.
Masaoka  Y.  Kojima  M.  Sugihara  S.  Yoshihara  T.  Koshino  M.  Ichihara  A. 《Plant and Soil》1993,155(1):75-78
Alfalfa (Medicago sativa L.) was grown in hydroponic culture to investigate adaptation to Fe-deficiency. Root exudates released into the nutrient solution from Fe-deficient plants were trapped and condensed on an amberlite XAD-4 resin column. The diethyl ether fraction of these exudates dissolved ferric phosphate remarkably. The dissolving capability was about 62 times higher than that of root exudates obtained from Fe-sufficient plants in complete nutrient solution. The Fe-dissolving compound was separated and identified. It was a new natural compound with molecular formula C14H10O5 and was identified as 2-(3,5-dihydroxyphenyl)-5,6-dihydroxybenzofuran by means of mass spectrometry and 1H-nuclear magnetic resonance. This new compound worked as a phytoalexin and inhibited completely the fungal growth of Fusarium oxysporum f. sp. phaseoli.  相似文献   

15.
It has been proposed that autoxidation of nitric oxide (NO) stimulates S-nitrosation of thiols located in the hydrophobic milieu. We tested whether thiols located in hydrophobic membranes undergo enhanced S-nitrosation in the presence of NO/O2. The transmembrane cysteinyl peptides C4 (AcNH-KKACALA(LA)6KK-CONH2) and C8 (AcNH-KKALALACALA(LA)3KK-CONH2) were incorporated into dilauroylphosphatidylcholine bilayers; their location in the membrane was determined by EPR spin labeling. The peptides, C8 and C4, and glutathione (GSH; 300 μM) were treated with a NO donor, DEA-NONOate, and nitrosothiol formation was determined under various O2 levels. Surprisingly, the more hydrophobic cysteinyl peptide, C8, did not yield any S-nitrosated product compared to GSH in the aqueous phase or C4 peptide in the liposomes in the presence of NO/O2. These data suggest that thiols located deeply in the hydrophobic core of the membrane may be less likely to undergo S-nitrosation in the presence of NO/O2.  相似文献   

16.
A derivative of Rhizobium japonicum (strain 122 DES) has been isolated which forms nodules on soybeans that evolve little or no H2 in air and efficiently fixes N2. Bacteroids isolated from nodules formed by strain 122 DES took up H2 with O2 as the physiological acceptor and appeared to be typical of those R. japonicum strains that possess the H2 uptake system. The hydrogenase system in soybean nodules is located within the bacteroids and activity in macerated bacteroids is concentrated in a particulate fraction. The pH optimum for the reaction is near 8.0 and apparent K m values for H2 and O2 are 2 M and 1 M, respectively. The H2 oxidizing activity of a suspension of 122 DES bacteroids was stable at 4°C for at least 4 weeks and was not particularly sensitive to O2. Neither C2H2 nor CO inhibited O2 dependent H2 uptake activity.Non-physiological electron acceptors of positive oxidation reduction potential also supported H2 uptake by bacteroids. The rate of H2 uptake with phenazine methosulfate as the acceptor was greater than that with O2. When methylene blue, triphenyltetrazolium, potassium ferricyanide or dichlorophenolindophenol were added to bacteriod suspensions, without preincubation, rates of H2 uptake were supported that were lower than those in the presence of O2. Preincubation of the bacteroids with acceptors increased the rates of H2 uptake. No H2 evolution was observed from reaction mixtures containing bacteroid suspensions and reduced methyl or benzyl viologens. Of a series of carbon substrates added to bacteroid suspensions only acetate, formate or succinate at concentrations of 50 mM resulted in 20% or greater inhibition of H2 oxidation.The H2 uptake capacity of isolated 122 DES bacteroids (expressed on a dry bacteroid basis) was at least 10-fold higher than the rate of the nitrogenase reaction in nodules expressed on a comparable basis. Since about 1 mol of H2 is evolved for every mol of N2 reduced during the N2 fixation reaction, these observations explain why soybean nodules formed by strain 122 DES and other strains with high H2 uptake activities have a capacity for recycling all the H2 produced from the nitrogenase reaction.Abbreviations PMS PHenazine methosulfate - MB Methylene blue  相似文献   

17.
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H2O2 production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O 2 ?? and OH? generation. The amount of both O 2 ?? and OH? was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O 2 ?? production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H2O2 production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H2O2 and O 2 ?? production, Cd reduced OH? production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.  相似文献   

18.
Protoplasts from a lignolytic fungus Fomes annosus were prepared through enzymatic hydrolysis of mycelium utilizing Novozym, a wall lytic enzyme preparation. Isolated protoplasts and living mycelium were compared in their ability to degrade 14C-labelled lignin related phenols and dehydropolymers of labelled coniferyl alcohol (synthetic lignin). The amounts of 14CO2 released from O14CH3-groups, 14C-2-side chains and 14C-rings by protoplasts was in the same range as those for intact mycelium. The methoxyl groups of synthetic lignin were more rapidly metabolized by protoplasts than by mycelium. When calculated in dpm of released 14CO2 per mg protein the decomposition of 14C-labelled synthetic lignin and lignin-related monomers in a hyphae-free system of protoplasts was considerable higher than that obtained by the intact mycelium. The presence of intact hyphae is thus not necessary for lignin degradation to occur.Non-common-abbreviations used DHP Dehydropolymer of coniferyl alcohol - LS lignosulfonates prepared from DHP  相似文献   

19.
Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm3 lumps to the soil in combination with no or 200 g NO3 --N g-1. At four occasions over a two-week study period, subsets of cores were measured for N2O production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air.Autoclaved yeast provided a C-source readily available for denitrifying bacteria in the soil. Nitrous oxide production was negligible in unamended columns whereas accumulated N2O losses in the presence of yeast material were substantial, varying between 15 to 49 ng N2O-N g-1 h-1. Mixing yeast into the soil caused the highest production of N2O followed by the yeast lump and no yeast treatments. Incubation in the presence of 10 Pa C2H2 indicated that denitrification was the sole source of N2O, in accordance with an increase in DEA. Nitrous oxide production and DEA peaked after 4–7 days of incubation, and both were unaffected by additional NO3 -. Two-to four-fold responses to anaerobiosis and accumulation of NO3 - and NH4 + in proximity of the lumps indicated that N2O production here was limited by relatively low C-availability. In contrast, 10- to 12-fold responses to anaerobiosis and no accumulation of inorganic N suggested a higher C-availability where yeast was mixed into the soil.  相似文献   

20.

Background and aims

The measurement of electrical capacitance in root–soil system (CR) is a useful method for estimating the root system size (RSS) in situ; however, CR–RSS regressions are often poor. It was hypothesized that this weak relationships could be partly due to the variable energy-loss rate, indicated by the dissipation factor (DF).

Methods

The values of CR and the associated DF were measured in six plant species grown in quasi-hydroponic pumice medium, arenosol and chernozem soil. The dielectric properties of the plant growth media were also recorded. A modified root–soil capacitance, CDF, was calculated from each CR/DF pair according to the formula CDF = CR·(DF/DFmean)α by estimating α with a standard nonlinear minimization of the sum of squared residuals for CDF–RSS regressions.

Results

The capacitive behavior of the medium improved (mean DF decreased) but fluctuated increasingly as the substrate became more complex. The mean DF values in plant–substrate systems were chiefly determined by the plant and were the most variable in chernozem soil. This strengthening substrate effect on CR measurements appeared as a decreasing trend in the R2 values obtained for the CR–RSS regressions. The regression slope was influenced by plant species and medium, while the y-intercept differed only between substrate types. The proposed use of CDF in place of CR could significantly improve the R2 of CDF–RSS regressions, particularly in chernozem soil (R2 increased by 0.07–0.31).

Conclusions

The application of CDF will provide more reliable and accurate RSS estimations and more efficient statistical comparisons. The findings are worth considering in future investigations using the root capacitance method.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号