首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD7 and CD28 are T cell Ig superfamily molecules that share common signaling mechanisms. To determine roles CD7 and CD28 might play in peripheral lymphocyte development and function, we have generated CD7/CD28-double-deficient mice. CD7- and CD28-single-deficient and CD7/CD28-double-deficient mice had normal levels of CD4 and CD8-single-positive T cells in thymus and spleen. However, CD28-deficient mice had decreased CD4+CD25+ T cells in spleen compared with wild-type mice, and CD7/CD28-double-deficient mice had decreased numbers of CD4+CD25+ T cells in both thymus and spleen compared with both wild-type and CD28-deficient mice. Functional studies demonstrated that CD4+CD25+ T cells from CD28-deficient and CD7/CD28-double-deficient mice could mediate suppression of CD3 mAb activation of CD4+CD25- wild-type T cells, but were less potent than wild-type CD4+CD25+ T regulatory cells. Thyroiditis developed in aged CD7/CD28-double-deficient mice (>1 year) that was not seen in age-matched control mice or single CD7- or CD28-deficient mice, thus suggesting in vivo loss of T regulatory cells allowed for the development of spontaneous thyroiditis. Taken together, these data demonstrated collaborative roles for both CD7 and CD28 in determination of number and function of CD4+CD25+ T regulatory cells in the thymus and peripheral immune sites and in the development of spontaneous thyroiditis.  相似文献   

2.
The immunologic requirements for generating long-lived protective CD8 T cell memory remain unclear. Memory CD8 populations generated in the absence of CD4 Th cells reportedly have functional defects, and at least a subset of CD8 T cells transiently express CD40 after activation, suggesting that direct CD4-CD8 T cell interactions through CD40 may influence the magnitude and functional quality of memory CD8 populations. To ascertain the role of CD40 in such direct T cell interactions, we investigated CD8 T cell responses in CD40-/- mice after infection with Listeria monocytogenes, an intracellular bacterium that induces APC activation and thus priming of CD8 T cells independently of CD4 Th cell help through CD40. In this study we show that memory CD8 T cells generated in CD40-deficient mice show in vivo cytotoxicity and cytokine production equivalent to CD8 memory T cells from wild-type mice. Upon secondary Listeria infection, CD40-/- memory CD8 T cells expand to greater numbers than seen in wild-type mice. These results indicate that CD40 ligation on CD8 T cells, although reportedly a part of CD8 T cell memory development in an H-Y-directed response, is not needed for the development of functional memory CD8 T cell populations after Listeria infection.  相似文献   

3.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

4.
Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45(+) and CD11b(+) cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin(-) Sca-1(+)c-Kit(+) (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.  相似文献   

5.
Multiple factors control susceptibility of C57BL/6 mice to infection with the helminth Heligmosomoides polygyrus, including TGF-β signaling, which inhibits immunity in vivo. However, mice expressing a T cell-specific dominant-negative TGF-β receptor II (TGF-βRII DN) show dampened Th2 immunity and diminished resistance to infection. Interestingly, H. polygyrus-infected TGF-βRII DN mice show greater frequencies of CD4(+)Foxp3(+)Helios(+) Tregs than infected wild-type mice, but levels of CD103 are greatly reduced on both these cells and on the CD4(+)Foxp3(+)Helios(-) population. Although Th9 and Th17 levels are comparable between infected TGF-βRII DN and wild-type mice, the former develop exaggerated CD4(+) and CD8(+) T cell IFN-γ responses. Increased susceptibility conferred by TGF-βRII DN expression was lost in IFN-γ-deficient mice, although they remained unable to completely clear infection. Hence, overexpression of IFN-γ negatively modulates immunity, and the presence of Helios(+) Tregs may maintain susceptibility on the C57BL/6 background.  相似文献   

6.
The inability to obtain sufficient numbers of transduced cells remains a limitation in gene therapy. One strategy to address this limitation is in vivo pharmacologic selection of transduced cells. We have previously shown that knockdown of HPRT using lentiviral delivered shRNA facilitates efficient selection of transduced murine hematopoietic progenitor cells (HPC) using 6-thioguanine (6TG). Herein, we now extend these studies to human HPC. We tested multiple shRNA constructs in human derived cell lines and identified the optimal shRNA sequence for knockdown of HPRT and 6TG resistance. We then tested this vector in human umbilical cord blood derived HPC in vitro and in NOD/SCID recipients. Knockdown of HPRT effectively provided resistance to 6TG in vitro. 6TG treatment of mice resulted in increased percentages of transduced human CD45+ cells in the peripheral blood and in the spleen in particular, in both myeloid and lymphoid compartments. 6TG treatment of secondary recipients resulted in higher percentages of transduced human cells in the bone marrow, confirming selection from the progeny of long-term repopulating HPCs. However, the extent of selection of cells in the bone marrow at the doses of 6TG tested and the toxicity of higher doses, suggest that this strategy may be limited to selection of more committed progenitor cells. Together, these data suggest that human HPC can be programmed to be resistant to purine analogs, but that HPRT knockdown/6TG-based selection may not be robust enough for in vivo selection.  相似文献   

7.
The CD8 coreceptor is important for positive selection of major histocompatibility complex I (MHC-I)-restricted thymocytes and in the generation of pathogen-specific T cells. However, the requirement for CD8 in these processes may not be essential. We previously showed that mice lacking beta(2)-microglobulin are highly susceptible to tumors induced by mouse polyoma virus (PyV), but CD8-deficient mice are resistant to these tumors. In this study, we show that CD8-deficient mice also control persistent PyV infection as efficiently as wild-type mice and generate a substantial virus-specific, MHC-I-restricted, T-cell response. Infection with vesicular stomatitis virus (VSV), which is acutely cleared, also recruited antigen-specific, MHC-I-restricted T cells in CD8-deficient mice. Yet, unlike in VSV infection, the antiviral MHC-I-restricted T-cell response to PyV has a prolonged expansion phase, indicating a requirement for persistent infection in driving T-cell inflation in CD8-deficient mice. Finally, we show that the PyV-specific, MHC-I-restricted T cells in CD8-deficient mice, while maintained long term at near-wild-type levels, are short lived in vivo and have extremely narrow T-cell receptor repertoires. These findings provide a possible explanation for the resistance of CD8-deficient mice to PyV-induced tumors and have implications for the maintenance of virus-specific MHC-I-restricted T cells during persistent infection.  相似文献   

8.
It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could, in theory, contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work, we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice, PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition, we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly, however, PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus, although PFTb administration led to increased numbers of HSCs and HPCs, it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.  相似文献   

9.
We have previously reported that CD8(+) T cells significantly influence Ab production based on the observation that posttransplant alloantibody levels in CD8-deficient murine hepatocyte transplant recipients are markedly enhanced. However, the precise mechanisms contributing to enhanced alloantibody production in the absence of CD8(+) T cells is not understood. We hypothesized that alloactivated CD8(+) T cells inhibit Ab production by skewing toward a proinflammatory cytokine profile, whereas when these cells are absent, an anti-inflammatory cytokine profile shifts the alloimmune response toward alloantibody production. To investigate this possibility, alloantibody isotype profiles were examined in CD8-deficient and wild-type hepatocyte recipients. We found that IgG1 (IL-4-dependent isotype) was the dominant alloantibody isotype in wild-type recipients as well as in CD8-deficient recipients, although the amount of alloantibody in the latter group was substantially higher. Utilizing real-time PCR we found that CD4(+) T cells from wild-type recipients significantly upregulated IFN-γ but not IL-4 mRNA. In contrast, in the absence of CD8(+) T cells, CD4(+) T cells switched to significantly upregulate IL-4 mRNA, while IFN-γ was downregulated. IL-4 knockout mice do not produce any posttransplant alloantibody. However, adoptive transfer of wild-type CD4(+) T cells into CD8-depleted IL-4 knockout mice restores high alloantibody levels observed in CD8-depleted wild-type recipients. This suggests that IL-4-producing CD4(+) T cells are critical for posttransplant alloantibody production. Additionally, this CD8-mediated regulation of posttransplant alloantibody production is IFN-γ-dependent. Further elucidation of the mechanisms by which CD8(+) T cells influence Ab production will significantly contribute to development of therapies to manipulate humoral responses to Ag.  相似文献   

10.
Delayed ICOS-B7h signal blockade promotes significant prolongation of cardiac allograft survival in wild-type but not in CD8-deficient C57BL/6 recipients of fully MHC-mismatched BALB/c heart allografts, suggesting the possible generation of CD8(+) regulatory T cells in vivo. We now show that the administration of a blocking anti-ICOS mAb results in the generation of regulatory CD8(+) T cells. These cells can transfer protection and prolong the survival of donor-specific BALB/c, but not third party C3H, heart grafts in CD8-deficient C57BL/6 recipients. This is unique to ICOS-B7h blockade, because B7 blockade by CTLA4-Ig prolongs graft survival in CD8-deficient mice and does not result in the generation of regulatory CD8(+) T cells. Those cells localize to the graft, produce both IFN-gamma and IL-4 after allostimulation in vitro, prohibit the expansion of alloreactive CD4(+) T cells, and appear to mediate a Th2 switch of recipient CD4(+) T cells after adoptive transfer in vivo. Finally, these cells are not confined to the CD28-negative population but express programmed death 1, a molecule required for their regulatory function in vivo. CD8(+)PD1(+) T cells suppress alloreactive CD4(+) T cells but do not inhibit the functions by alloreactive CD8(+) T cells in vitro. These results describe a novel allospecific regulatory CD8(+)PD1(+) T cell induced by ICOS-B7h blockade in vivo.  相似文献   

11.
Jak3-deficient mice display vastly reduced numbers of lymphoid cells. Thymocytes and peripheral T cells from Jak3-deficient mice have a high apoptotic index, suggesting that Jak3 provides survival signals. Here we report that Jak3 regulates T lymphopoiesis at least in part through its selective regulation of Bax and Bcl-2. Jak3-deficient thymocytes express elevated levels of Bax and reduced levels of Bcl-2 relative to those in wild-type littermates. Notably, up-regulation of Bax in Jak3-deficient T cells is physiologically relevant, as Jak3 Bax double-null mice have marked increases in thymocyte and peripheral T-cell numbers. Rescue of T lymphopoiesis by Bax loss was selective, as mice deficient in Jak3 plus p53 or in Jak3 plus Fas remained lymphopenic. However, Bax loss failed to restore proper ratios of peripheral CD4/CD8 T cells, which are abnormally high in Jak3-null mice. Transplantation into Jak3-deficient mice of Jak3-null bone marrow transduced with a Bcl-2-expressing retrovirus also improved peripheral T-cell numbers and restored the ratio of peripheral CD4/CD8 T cells to wild-type levels. The data support the concepts that Jak kinases regulate cell survival through their selective and cell context-dependent regulation of pro- and antiapoptotic Bcl-2 family proteins and that Bax and Bcl-2 play distinct roles in T-cell development.  相似文献   

12.
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.  相似文献   

13.
Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.  相似文献   

14.
Inflammation is increasingly recognized as an essential component of tumorigenesis, which is promoted and suppressed by various T cell subsets acting in different ways. It was shown previously in Runx3-deficient mice that differentiation of CD8 T and NK cells is perturbed. In this study, we show that Runx3 is also required for proper differentiation and function of regulatory T cells. In Runx3-deficient mice, T cells were unable to inhibit inflammation and to suppress tumor development. As expected, recombination activating gene 2-deficient mice bearing Runx3-deficient lymphocytes spontaneously developed colon tumors. However, tumor formation was completely blocked by transfer of either regulatory T cells or CD8 T cells derived from wild-type mice to mutant mice or by housing mutant mice in a specific pathogen-free condition. These results indicate that Runx3-deficient lymphocytes and microorganisms act together to induce inflammation and consequently induce the development of colon tumors.  相似文献   

15.
16.
Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.  相似文献   

17.
We validated the correlation of aldehyde dehydrogenase ALDH(br) cells with total and viable CD34(+) cells in fresh and thawed hematopoietic progenitor cell (HPC) products, and looked for a correlation with time to white blood cell (WBC) and platelet engraftment after autologous transplantation, using simple linear regression analyzes. We found a significant correlation between pre-freeze ALDH(br) cell numbers and pre-freeze total CD34(+) (P < 0.001), viable CD34(+) (P < 0.001) and post-thaw viable CD34(+) (P < 0.001) cell numbers. We suggest that ALDH(br) may be substituted for CD34(+) cell numbers when evaluating HPC. As post-thaw viability testing apparently adds no significant information, we suggest that it may not be necessary. Finally, neither marker correlated with time to engraftment in our patients, supporting previous data suggesting the existence of a threshold dose for timely engraftment around 2.5 × 10(6) cells/kg.  相似文献   

18.
The down-regulation of CD62L that accompanies T lymphocyte activation is thought to redirect cells away from lymph nodes to sites of infection. In this study, CD62L was maintained on Ag-activated T cells and their distribution, and ability to clear pathogen from peripheral sites determined. CD62L was down-regulated on Ag-specific CD8 T cells in lungs of C57BL/6 mice but maintained in CD62L transgenic mice at day 8 after influenza infection. However, the numbers of influenza-specific CD8 T cells recruited were similar in CD62L transgenic and C57BL/6 mice. Memory CD8 T cell numbers in the lungs and noninvolved organs 100 days after primary infection were similar in CD62L transgenic and C57BL/6 mice, despite differing CD62L expression. Transgenic mice expressing wild-type CD62L cleared a recombinant vaccinia virus expressing an influenza-derived CD8 T cell epitope as efficiently as C57BL/6 mice. However, transgenic mice expressing a protease resistant mutant of CD62L showed significantly delayed viral clearance, despite normal CTL generation and the presence of CD107a and IFN-gamma expressing influenza-specific CD8 T cells. These results demonstrate that CD62L down-regulation is not required for CD8 memory cells to home to sites of infection. However, their ability to clear virus is significantly compromised if CD62L shedding is abrogated.  相似文献   

19.
Fanconi anemia (FA) is a genetic syndrome predisposing to hematopoietic failure. Little is known about the pathophysiology of FA, except that tumor necrosis factor-alpha (TNF-alpha) is overexpressed in patients. FA group C (Fac) gene knockout mice have been developed in order to model the human disease, but the mice do not spontaneously exhibit aplasia. To investigate secondary influences on hematopoiesis in the Fac-null mice, we studied the sensitivity of hematopoietic progenitor cells (HPC) to death receptor triggering by TNF-alpha and Fas receptor (CD95) ligation. Previously we had found that overexpression of a human FAC transgene protects hematopoietic progenitors from Fas-mediated apoptosis (Wang et al., 1998, Cancer Res 58:3538-3541). In the present experiments with Fac-null mice, growth of erythroid burst-forming units (BFU-E) was significantly inhibited by TNF-alpha and CD95 ligation. Flow cytometric analysis revealed that CD95 was induced more readily in the Fac-null CD34+ cell fraction. Apoptosis induced by TNF-alpha alone or with CD95 ligation also occurred more frequently in null mouse HPC. We then bred null mice against transgenic mice overexpressing TNF-alpha (at serum levels in the range of 100 pg/ml). Resultant Fac-null mice that overexpressed TNF-alpha not only yielded decreased numbers of BFU-E but also expressed higher levels of CD95 in the CD34+ fraction. We conclude that mutation in the Fac protein induces heightened sensitivity to TNF-alpha and Fas receptor ligation, results that may explain the mechanism of anemia in FA-C patients.  相似文献   

20.
The serine/threonine kinase RIP2 has been reported to be essential for Nod1 and Nod2 mediated cell activation, and has been suggested to play a role in the signaling cascade downstream of the T-cell receptor. We sought to ascertain the exact role of RIP2 in T-helper cell differentiation and CD8+ T-cell effector function in vivo and in vitro. In contrast to previous reports, we found that RIP2-deficient T cells did not exhibit impaired proliferation upon TCR engagement in vitro, and differentiation to cytokine producing Th1 or Th2 cells was normal in the absence of RIP2. These results were confirmed in vivo, as wild-type and RIP2-deficient virus-specific CD8+ T cells expanded comparably in mice after LCMV infection. Wild-type and RIP2-deficient CD4+ and CD8+ T cells from infected mice also showed similar proliferation and cytokine production when restimulated with full or partial agonist peptides ex vivo. Furthermore, no significant difference in adaptive T-cell responses could be observed between wild-type and RIP2-deficient mice after Listeria monocytogenes infection. Thus contrary to early reports, our data show that RIP2 is not an essential component of the TCR signaling machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号