首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

2.
A hybrid precursor protein constructed by fusing the mitochondrial matrix-targeting signal of rat preornithine carbamyl transferase to murine cytosolic dihydrofolate reductase (designated pO-DHFR) was expressed in Escherichia coli. Following purification under denaturing conditions, pO-DHFR was capable of membrane translocation when diluted directly into import medium containing purified mitochondria but lacking cytosolic extracts. This import competence was lost with time, however, when the precursor was diluted and preincubated in medium lacking mitochondria, unless cytosolic proteins (provided by rabbit reticulocyte lysate) were present. Identical results were obtained for purified precursor made by in vitro translation. The ability of the cytosolic proteins to maintain the purified precursor in an import-competent state was sensitive to protease, N-ethylmaleimide (NEM), and was heat labile. Further, this activity appeared to be signal sequence dependent. ATP was not required for the maintenance of pO-DHFR competence, nor did purified 70-kDa heat shock protein (the constitutive form of Hsp70) substitute for this activity. Interestingly, however, purified Hsp70 prevented aggregation of the precursor in an ATP-dependent manner and, as well, retarded the apparent rate and extent of pO-DHFR folding. Partial purification of reticulocyte lysate proteins indicated that competence activity resides within a large mass protein fraction (200-250 kDa) that contains Hsp70. Sucrose density gradient analysis revealed that pO-DHFR reversibly interacts with components of this fraction. Pretreatment of the fraction with NEM, however, significantly stabilized the subsequent formation of a complex with the precursor. The results indicate that Hsp70 can retard precursor polypeptide folding and prevent precursor aggregation; however, by itself, Hsp70 cannot confer import competence to pO-DHFR. Maintenance of import competence correlates with interactions between the precursor and an NEM-sensitive cytosolic protein fraction. Efficient dissociation of the precursor from this complex appears to require a reactive thiol moiety on the cytosolic protein(s).  相似文献   

3.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

4.
Different transport pathways of individual precursor proteins in mitochondria   总被引:20,自引:0,他引:20  
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cell-free reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase. Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1-10 microM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1-3 pmol X min-1 X (mg mitochondrial protein)-1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 10(4) did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidate phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c. These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria by mitochondria as a first step in the transport process.  相似文献   

5.
ATP is involved in conferring transport competence to numerous mitochondrial precursor proteins in the cytosol. Unfolded precursor proteins were found not to require ATP for import into mitochondria, suggesting a role of ATP in the unfolding of precursors. Here we report the unexpected finding that a hybrid protein containing the tightly folded passenger protein dihydrofolate reductase becomes unfolded and specifically translocated across the mitochondrial membranes independently of added ATP. Moreover, interaction of the precursor with the mitochondrial receptor components does not require ATP. The results suggest that ATP is not involved in the actual process of unfolding during membrane translocation of precursors. ATP rather appears to be necessary for preventing the formation of improper structures of precursors in the cytosol and for folding of imported polypeptides on (and release from) chaperone-like molecules in the mitochondrial matrix.  相似文献   

6.
The import of the precursor of mitochondrial aspartate aminotransferase was reconstituted in vitro with isolated mitochondria thus corroborating the earlier conclusion of a post-translational uptake. The higher Mr precursor was synthesized in a reticulocyte lysate programmed with free polysomes from chicken liver. After incubation with intact mitochondria from chicken heart about 50% of the precursor was converted to the mature form in a time-dependent process, its rate being a function of the amount of mitochondria added. The same amount of precursor was processed to the mature form on addition of a mitochondrial extract. No conversion to the mature enzyme took place when the precursor was incubated with intact mitochondria in the presence of the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone or of the chelator o-phenanthroline which penetrates the mitochondrial inner membrane. In contrast, the chelator bathophenanthroline disulfonate which does not diffuse into the mitochondrial matrix did not inhibit the appearance of the mature form. The results indicate that that precursor must pass through an energized inner mitochondrial membrane before it is processed by a chelator-sensitive protease in the mitochondrial matrix. Excess mature mitochondrial aspartate aminotransferase did not compete with the precursor for its uptake into mitochondria. Mature mitochondrial aspartate aminotransferase is an alpha 2-dimer with Mr = 2 X 45,000. Both the precursor synthesized in a rabbit reticulocyte lysate and the precursor accumulated in the cytosol of carbonyl cyanide m-chlorophenylhydrazone-treated chicken embryo fibroblasts were found to exist as homodimer or hetero-oligomer and high Mr complexes (Mr greater than 300,000).  相似文献   

7.
K Sakaki  M Sakaguchi  K Ota  K Mihara 《FEBS letters》1999,454(3):345-348
Proteases have been used to examine the topology of proteins on various membranes. We reexamined the conditions of protease treatment for rough microsomal membranes and found that proteinase K degraded the lumenal proteins in the presence of reticulocyte lysate. The lysate treated with either heat or N-ethylmaleimide no longer promoted the degradation. The reticulocyte dependent degradation was also observed with papain, trypsin, and elastase. This activity was transiently generated by treating reticulocyte lysate short-term with trypsin. We thus concluded that a membrane perturbing factor(s) must exist in reticulocyte which is transiently activated by protease treatment.  相似文献   

8.
The mechanism of import of proteins into mitochondria was studied by using the peptide of the presequence of ornithine aminotransferase (the extrapeptide), which was chemically synthesized and is composed of 34 amino acids. When the extrapeptide was incubated with isolated mitochondria in the presence of a rabbit reticulocyte lysate at 25 degrees C, it was imported into the mitochondrial matrix, and the import depended on the inner membrane potential, but not added ATP. The import of several precursors of mitochondrial proteins was competitively inhibited by the presence of excess extrapeptide in the reaction system, indicating that the extrapeptide and mitochondrial proteins were imported by the same machinery. Import of the extrapeptide was significantly stimulated by addition of a rabbit reticulocyte lysate, and a component of the lysate (the cytosolic factor) stimulating import of the extrapeptide was purified about 20,000 times by successive column chromatography on DEAE-cellulose and aminopentyl-Sepharose 4B. The binding of the extrapeptide to liposomes composed of egg lecithin and partially purified receptor of the precursor of mitochondrial protein (Ono, H., and Tuboi, S., (1985) Biochem. Int. 10, 351-357) required the cytosolic factor when the concentration of the peptide was less than 1.5 X 10(-8) M, suggesting that the physiological binding of the precursors of mitochondrial proteins to the receptor is dependent on the cytosolic factor. The extrapeptide and the cytosolic factor were shown to form a complex. From these results, the mechanism of binding of the extrapeptide to the receptor of the mitochondrial outer membrane is suggested to be as follows: the peptide (the precursor of mitochondrial protein) and the cytosolic factor form a complex, and then the complex is recognized by and bound to the receptor.  相似文献   

9.
Several recent studies indicate that substrates for ubiquitin-dependent proteolysis must possess unblocked alpha-amino termini. To examine further the importance of free amino groups for proteolytic susceptibility we selected pancreatic trypsin inhibitor (PTI) as a test substrate. PTI can be circularized to form cPTI, a molecule that lacks alpha-amino groups in the absence of an endoproteolytic cleavage. We compared the breakdown of radioiodinated PTI and cPTI in rabbit reticulocyte lysate and found that cPTI was not stabilized relative to PTI. In addition, proteolysis of PTI or cPTI was not inhibited upon conversion of their lysine residues to homoarginine. However, neither degradation of PTI nor cPTI required ATP, and ubiquitin conjugation to either molecule was minor relative to known substrates of the ubiquitin pathway. Thus, PTI and cPTI are cleaved by an ATP-independent endoprotease(s) that does not require the substrate to be ubiquitinated. Such an activity was identified in low salt fractions obtained upon DEAE chromatography of reticulocyte lysate. The ubiquitin/ATP-dependent protease and another large multisubunit protease, both of which elute from DEAE-Fractogel at higher salt concentrations, do not degrade PTI or cPTI. Although monomeric PTI was rapidly degraded in reticulocyte lysate, cross-linked PTI molecules were stable both in reticulocyte lysate and following introduction into cultured cells using red blood cell-mediated microinjection. Thus, increased rates of turnover do not necessarily correlate with greater molecular mass of the substrate.  相似文献   

10.
M13 procoat protein is processed to transmembrane coat protein by dog pancreas microsomes after completion of synthesis and in the absence of the signal recognition particle (SRP)/docking protein system. ATP is required for fast and efficient processing of procoat protein by microsomes in a reticulocyte lysate. Requirement for ATP is also observed in the absence of ribosomes or docking protein. This indicates the existence of a unique assembly pathway for procoat protein into microsomes which depends on ATP but does not depend on the SRP/docking protein and ribosome/ribosome receptor systems. We suggest that the ATP requirement is linked to a so far unknown component of the reticulocyte lysate, acting on transport competence of precursor proteins.  相似文献   

11.
Cytochrome b2 is synthesized as a precursor in the cytoplasm and imported to the intermembrane space of yeast mitochondria. We show here that the precursor contains a tightly folded heme-binding domain and that translocation of this domain across the outer membrane requires ATP. Surprisingly, it is ATP in the mitochondrial matrix rather than external ATP that drives import of the heme-binding domain. When the folded structure of the heme-binding domain is disrupted by mutation or by urea denaturation, import and correct processing take place in ATP-depleted mitochondria. These results indicate that (1) cytochrome b2 reaches the intermembrane space without completely crossing the inner membrane, and (2) some precursors fold outside the mitochondria but remain translocation-competent, and import of these precursors in vitro does not require ATP-dependent cytosolic chaperone proteins.  相似文献   

12.
13.
Mitochondrial import stimulation factor (MSF) unfolds wheat germ lysate synthesized aggregated mitochondrial precursor proteins and stimulates their mitochondrial import in an ATP dependent manner. Here we analysed the function of MSF mainly by utilizing chemically pure adrenodoxin precursor (pAd). MSF bound to the unfolded pAd and prevented it from losing import competence and also restored the import competence of the aggregated pAd dependent on ATP hydrolysis. The import incompetent aggregated mitochondrial precursors induced the ATPase activity of MSF and the activity was strongly inhibited by isolated mitochondrial outer membrane (OM) but not by trypsin treated outer membrane (tOM). The precursor induced ATPase activity of N-ethylmaleimide (NEM)-treated MSF was not inhibited by OM. In this context, the MSF-precursor complex specifically bound to OM and binding was abolished both by the treatment of OM with trypsin and by the treatment of MSF with NEM. These results show that MSF is a novel cytoplasmic chaperone protein with a mitochondrial precursor-targeting function.  相似文献   

14.
Newly synthesized, [35S]methionine-labeled cholesterol side-chain cleavage cytochrome P-450, 11β-hydroxylase cytochrome P-450, adrenodoxin, and adrenodoxin reductase were immunoisolated from radiolabeled bovine adrenocortical cells and from rabbit reticulocyte lysate translation systems programmed with bovine adrenocortical RNA. Cholesterol side-chain cleavage cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight of 54,500 whereas this cytochrome P-450 immunoisolated from radiolabeled bovine adrenocortical cells had an apparent molecular weight of 49,000, an apparent molecular weight identical to that of the purified protein. Similarly, newly synthesized, [35S]methionine-labeled 11β-hydroxylase cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight 5500 daltons larger than that immunoisolated from radiolabeled adrenocortical cells (48,000) and the authentic cytochrome (48,000). The cell-free translation products of adrenodoxin and adrenodoxin reductase were also several thousand daltons larger than the corresponding mitochondrial proteins. The apparent molecular weight of adrenodoxin immunoisolated from a reticulocyte lysate translation system was 19,000, while that of the authentic protein was 12,000. Adrenodoxin reductase immunoisolated from a lysate translation system had an apparent molecular weight of 53,400; an apparent molecular weight 2300 daltons larger than that of adrenodoxin reductase immunoisolated from radiolabeled adrenocortical cells or purified by conventional techniques. These results demonstrate that all of the components of the mitochondrial steroid hydroxylase systems of the bovine adrenal cortex are synthesized as precursor molecules of higher molecular weight. Presumably, the precursor proteins are post-translationally converted to the mature enzymes upon insertion into the mitochondrion by a process which includes the proteolytic cleavage of the precursor segments.  相似文献   

15.
Mitochondrial precursor proteins synthesized in rabbit reticulocyte lysate (RRL) are readily imported into mitochondria, whereas the same precursors synthesized in wheat germ extract (WGE) fail to be imported. We have investigated factors that render import incompetence from WGE. A precursor that does not require addition of extramitochondrial ATP for import, the F(A)d ATP synthase subunit, is imported from WGE. Import of chimeric constructs between precursors of the F(A)d protein and alternative oxidase (AOX) with switched presequences revealed that the mature domain of the F(A)d precursor defines the import competence in WGE as only the construct containing the presequence of AOX and mature portion of F(A)d (pAOX-mF(A)d) could be imported. Import competence of F(A)d and pAOX-mF(A)d correlated with solubility of these precursors in WGE, however, solubilization of import-incompetent precursors with urea did not restore import competence. Addition of RRL to WGE-synthesized precursors did not stimulate import but addition of WGE to the RRL-synthesized precursors or to the over-expressed mitochondrial precursor derived from the F1beta ATP synthase precursor inhibited import into mitochondria. The dual-targeted glutathione reductase precursor synthesized in WGE was imported into chloroplasts, but not into mitochondria. Antibodies against the 14-3-3 guidance complex characterized for chloroplast targeting were able to immunoprecipitate all of the precursors tested except the F(A)d ATP synthase precursor. Our results point to the conclusion that the import incompetence of WGE-synthesized mitochondrial precursors is not presequence dependent and is a result of interaction of WGE inhibitory factors with the mature portion of precursor proteins.  相似文献   

16.
May T  Soll J 《The Plant cell》2000,12(1):53-64
Transit sequences of chloroplast-destined precursor proteins are phosphorylated on a serine or threonine residue. The amino acid motif around the phosphorylation site is related to the phosphopeptide binding motif for 14-3-3 proteins. Plant 14-3-3 proteins interact specifically with wheat germ lysate-synthesized chloroplast precursor proteins and require an intact phosphorylation motif within the transit sequence. Chloroplast precursor proteins do not interact with 14-3-3 when synthesized in the heterologous reticulocyte lysate. In contrast, a precursor protein destined for plant mitochondria was found to be associated with 14-3-3 proteins present in the reticulocyte lysate but not with 14-3-3 from wheat germ lysate. This indicates an unrecognized selectivity of 14-3-3 proteins for precursors from mitochondria and plastids in plants in comparison to fungi and animals. The heterooligomeric complex has an apparent size of 200 kD. In addition to the precursor protein, it contains 14-3-3 (probably as a dimer) and a heat shock protein Hsp70 isoform. Dissociation of the precursor complex requires ATP. Protein import experiments of precursor from the oligomeric complex into intact pea chloroplasts reveal three- to fourfold higher translocation rates compared with the free precursor, which is not complexed. We conclude that the 14-3-3-Hsp70-precursor protein complex is a bona fide intermediate in the in vivo protein import pathway in plants.  相似文献   

17.
A higher molecular weight precursor (Mr = 39,000) to the liver mitochondrial matrix enzyme, ornithine carbamyltransferase (Mr = 36,000), is imported and processed by heart mitochondria in vitro in a manner similar to liver mitochondria. In both systems, however, an additional 37-kDa ornithine carbamyltransferase polypeptide appears, but this arises from nonspecific events and, therefore, does not represent a bona fide intermediate in the overall processing sequence. Our experiments demonstrate that the outer mitochondrial membrane of mitochondria contains a protease-sensitive (5 micrograms of trypsin or chymotrypsin/ml, 15 min at 2 degrees C), salt-resistant (1.0 M KCl) protein which is required to maintain import functions. In addition, functional post-translational import requires a component of the reticulocyte lysate (i.e. cytosol) that is used for initially synthesizing precursor enzyme. The component is retained by Sephadex G-25. Import of Sephadex G-25-excluded precursor is restored by fresh reticulocyte lysate but not by a combination of other additives, including Mg2+, K+, ATP, ADP, Pi, succinate, and total translation mixture (minus lysate).  相似文献   

18.
A cytosolic protein factor(s) is involved in the import of precursor proteins into mitochondria. PBF (presequence binding factor) is a protein factor which binds to the precursor form (pOTC) of rat ornithine carbamoyltransferase (OTC) but not to the mature OTC, and is required for the mitochondrial import of pOTC. The precursors for aspartate aminotransferase and malate dehydrogenase as well as pOTC synthesized in a reticulocyte lysate were efficiently imported into the mitochondria. However, the precursors synthesized in the lysate depleted for PBF by treatment with pOTC-Sepharose were not imported. Readdition of the purified PBF to the depleted lysate fully restored the import. pOTC synthesized in the untreated lysate sedimented as a complex with a broad peak of around 9 S, whereas pOTC synthesized in the PBF-depleted lysate sedimented at an expected position of monomer (2.5 S). When the purified PBF was readded to the depleted lysate, pOTC sedimented as a complex of about 7 S. In contrast to most mitochondrial proteins, rat 3-oxoacyl-CoA thiolase is synthesized with no cleavable presequence and an NH2-terminal portion of the mature protein functions as a mitochondrial import signal. The thiolase synthesized in the PBF-depleted lysate could be efficiently imported into the mitochondria, and readdition of PBF had little effect on the import. The thiolase synthesized in the untreated, the PBF-depleted, or the PBF-readded lysate sedimented at an expected position of monomer (2.5 S). These observations provide support for the existence of PBF-dependent and -independent pathways of mitochondrial protein import.  相似文献   

19.
The cytosolic heat shock cognate 70-kDa protein (hsc70) is required for efficient import of ornithine transcarbamylase precursor (pOTC) into rat liver mitochondria (K. Terada, K. Ohtsuka, N. Imamoto, Y. Yoneda, and M. Mori, Mol. Cell. Biol. 15:3708-3713, 1995). The requirement of hsc70 for mitochondrial import of various precursor proteins and truncated pOTCs was studied by using an in vitro translation import system in which hsc70 was completely depleted. hsc70-dependent import of pOTC was about 60% of the total import, while import of the aspartate aminotransferase precursor, the serine:pyruvate aminotransferase precursor, and 3-oxoacyl coenzyme A thiolase was about 50, 30, and 0%, respectively. The subunit sizes of these four precursor proteins were 40 to 47 kDa. When pOTC was serially truncated from the COOH terminal, the hsc70 requirement decreased gradually and was not evident for the shortest truncated pOTCs of 90 and 72 residues. These truncated pOTCs were imported and proteolytically processed rapidly in 0.5 to 2 min at 25 degrees C, and the processed mature portions and the presequence portion were rapidly degraded. Sucrose gradient centrifugation analysis followed by import assay showed that pOTC synthesized in rabbit reticulocyte lysate forms an import-competent complex of about 11S in an hsc70-dependent manner. S values of import-competent forms of aspartate aminotransferase precursor, serine:pyruvate aminotransferase precursor, and 3-oxoacyl coenzyme A thiolase were 9S, 9S, and 4S, respectively. Thus, the S value decreased as the hsc70 dependency decreased. Precursor proteins were coimmunoprecipitated from the reticulocyte lysate containing the newly synthesized precursor proteins with an hsc70 antibody. The amount of coimmunoprecipitated proteins was much larger in the absence of ATP than in its presence. Among the four precursor proteins, the amount of coimmunoprecipitated protein decreased as the hsc70 dependency decreased.  相似文献   

20.
Incubation of [35S]methionine labeled mitochondria from rat liver with rabbit reticulocyte lysate under the same conditions as those used in the import of mitochondrial protein precursors results in the release of mitochondrial proteins to the medium. Fractionation of the lysates with ammonium sulphate yields a fraction, essentially free of haemoglobin, which exhibits higher activity for the release of mitochondrial proteins than the starting lysate. The fraction has a molecular mass of greater than 10 kDa and is heat-sensitive. The release is insensitive to inhibitors of reticulocyte lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号