首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
C. S. Haley  S. A. Knott    J. M. Elsen 《Genetics》1994,136(3):1195-1207
The use of genetic maps based upon molecular markers has allowed the dissection of some of the factors underlying quantitative variation in crosses between inbred lines. For many species crossing inbred lines is not a practical proposition, although crosses between genetically very different outbred lines are possible. Here we develop a least squares method for the analysis of crosses between outbred lines which simultaneously uses information from multiple linked markers. The method is suitable for crosses where the lines may be segregating at marker loci but can be assumed to be fixed for alternative alleles at the major quantitative trait loci (QTLs) affecting the traits under analysis (e.g., crosses between divergent selection lines or breeds with different selection histories). The simultaneous use of multiple markers from a linkage group increases the sensitivity of the test statistic, and thus the power for the detection of QTLs, compared to the use of single markers or markers flanking an interval. The gain is greater for more closely spaced markers and for markers of lower information content. Use of multiple markers can also remove the bias in the estimated position and effect of a QTL which may result when different markers in a linkage group vary in their heterozygosity in the F(1) (and thus in their information content) and are considered only singly or a pair at a time. The method is relatively simple to apply so that more complex models can be fitted than is currently possible by maximum likelihood. Thus fixed effects and effects of background genotype can be fitted simultaneously with the exploration of a single linkage group which will increase the power to detect QTLs by reducing the residual variance. More complex models with several QTLs in the same linkage group and two-locus interactions between QTLs can similarly be examined. Thus least squares provides a powerful tool to extend the range of crosses from which QTLs can be dissected whilst at the same time allowing flexible and realistic models to be explored.  相似文献   

3.
4.
5.
6.
7.
P. D. Keightley  W. G. Hill 《Genetics》1992,131(3):693-700
To measure the amount of new genetic variation in 6-week weight of mice arising each generation from mutation, selection lines derived from an initially inbred strain were maintained for 25 generations. An analysis using an animal model with restricted maximum likelihood was applied to estimate a mutational genetic component of variance for the infinitesimal model of many genes of small effect. Assuming that the inbred base population was at a mutation-drift equilibrium, it is estimated that the heritability for body size has increased by 1.0% per generation, with lower and upper confidence limits of 0.6% and 1.6%, respectively. A model which includes a mutational genetic component of variance fits the data much better than one involving only base population genetic variance. A model with no genetic component fits the data very poorly. An environmental covariance of body size of mother and offspring was included in the model and accounts for 10% of the variance. By using information only from the observed response to selection, the estimated increase in heritability from mutation is 0.3% per generation. These values are higher than published estimates for the increase in variance from spontaneous mutations in bristle traits of Drosophila, for which there are extensive data, but similar to estimates for various skeletal traits in mice.  相似文献   

8.
Previously, we mapped quantitative trait loci (QTL) affecting response to short-term selection for abdominal bristle number to seven suggestive regions that contain loci involved in bristle development and/or that have adult bristle number mutant phenotypes, and are thus candidates for bristle number QTL in natural populations. To test the hypothesis that the factors contributing to selection response genetically interact with these candidate loci, high and low chromosomes from selection lines were crossed to chromosomes containing wild-type or mutant alleles at the candidate loci, and the numbers of bristles were recorded in trans heterozygotes. Quantitative failure to complement, detected as a significant selection line*cross effect by analysis of variance, can be interpreted as evidence for allelism or epistasis between the factors on selected chromosomes and the candidate loci. Mutations at some candidate loci (bb, emc, h, Dl, Hairless) showed strong interactions with selected chromosomes, whereas others interacted weakly (ASC, abd, Scr) or not at all (N, mab, E(spl)). These results support the hypothesis that some candidate loci, initially identified through mutations of large effect on bristle number, either harbor or are close members in the same genetic pathway as variants that contribute to standing variation in bristle number.  相似文献   

9.
对30只灵昆鸡采用12个微卫星标记进行了遗传多样性检测,并采用最小二乘法拟合线性模型和方差分析法,分析了其与体重、体斜长、胸宽、胸深、龙骨长、骨盆宽、胫长和胫围等性状的相关性。结果表明:灵昆鸡的体重与体斜长、胸宽、胸深、龙骨长、胫长差异极显著(P<0.01);体斜长与胸宽、胸深、龙骨长、胫长差异极显著(P<0.01),与胫围差异显著(P<0.05);胸宽与龙骨长、胫长差异极显著(P<0.01),与胸深、胫围差异显著(P<0.05);胸深与龙骨长、胫长、胫围差异极显著(P<0.01);龙骨长与胫长、胫围差异极显著(P<0.01);胫长与胫围差异极显著(p<0.01);骨盆宽除了与胫围显著相关(P<0.05)外,与其余性状均无显著相关(P>0.05)。方差分析结果表明:在所测定的12个微卫星座位中,只有MCW0165座位的不同基因型对8个性状差异均不显著(P>0.05);其余座位的不同基因型对一个或多个性状差异均显著或极显著。经多重比较发现,每个性状受到多个基因座的影响。  相似文献   

10.
TFC. Mackay  J. D. Fry 《Genetics》1996,144(2):671-688
We have investigated genetic interactions between spontaneous mutations affecting abdominal and sternopleural bristle number that have accumulated in 12 long-term selection lines derived from an inbred strain, and mutations at 14 candidate bristle number quantitative trait loci. The quantitative test for complementation was to cross the selection lines to an inbred wild-type strain (the control cross) and to a derivative of the control strain into which the mutant allele at the candidate locus to be tested was substituted (the tester strain). Genetic interactions between spontaneous mutations affecting bristle number and the candidate locus mutations were common, and in several cases the interaction effects were different in males and females. Analyses of variance of the (tester - control) differences among and within groups of replicate lines selected in the same direction for the same trait showed significant group effects for several candidate loci. Genetically, the interactions could be caused by allelism of, and/or epistasis between, spontaneous mutations in the selection lines and the candidate locus mutations. It is possible that much of the response to selection was from new mutations at candidate bristle number quantitative trait loci, and that for some of these loci, mutation rates were high.  相似文献   

11.
12.
The identification of quantitative trait loci (QTL) and their interactions is a crucial step toward the discovery of genes responsible for variation in experimental crosses. The problem is best viewed as one of model selection, and the most important aspect of the problem is the comparison of models of different sizes. We present a penalized likelihood approach, with penalties on QTL and pairwise interactions chosen to control false positive rates. This extends the work of Broman and Speed to allow for pairwise interactions among QTL. A conservative version of our penalized LOD score provides strict control over the rate of extraneous QTL and interactions; a more liberal criterion is more lenient on interactions but seeks to maintain control over the rate of inclusion of false loci. The key advance is that one needs only to specify a target false positive rate rather than a prior on the number of QTL and interactions. We illustrate the use of our model selection criteria as exploratory tools; simulation studies demonstrate reasonable power to detect QTL. Our liberal criterion is comparable in power to two Bayesian approaches.  相似文献   

13.
Maximum likelihood methods have been used to compare the fit of twenty different genetic models to experimental data on fourteen characters, each measured on two parental strains, F(1) hybrids and both backcrosses. Although variation in all characters was continuous, differentiation between the various models was meaningful, the mean likelihood ratio between the best and worst models for each character being greater than 10(4). Models with only one or two loci were adequate to account for the observed genetic variation in eleven of the fourteen characters. These results indicate that even in species without special genetic advantages, it may be possible to identify individually some of the genes responsible for naturally-occurring variation within the range of normality.  相似文献   

14.
利用染色体单片段代换系定位水稻芽期耐冷QTL   总被引:2,自引:0,他引:2  
水稻(Oryza sativa)芽期耐冷性是其生长发育过程中不可忽视的重要数量性状,易受遗传背景的干扰和环境因素的影响;利用单片段代换系(SSSL.s)能减少遗传背景的干扰。该研究以85个单片段代换系为材料,其受体亲本为广陆矮4号,供体亲本为日本晴。通过单因素方差分析和Dun netts多重比较,分析单片段代换系与受体亲本之间芽期耐冷性的差异,并对代换片段上的芽期耐冷QTL进行鉴定。以F≤0.001为闽值共检测到8个芽期耐冷QTL,分别分布在第1、6、8、9和10号染色体上,其中4个QTL通过代换作图被初步定位。这些QTL加性效应均表现为增效作用,在2个年度间其加性效应值的变化范围分别为14%-44%和10%-45%,加性效应百分率的变化范围分别为700%-2 200%和500%-2 250%,其中qCTPg-2在2个年度间的加性效应均最高,分别为44%和45%。研究结果对进一步发掘和利用新的水稻芽期耐冷QTL具有重要意义。  相似文献   

15.
Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.  相似文献   

16.
P. D. Keightley  T. Hardge  L. May    G. Bulfield 《Genetics》1996,142(1):227-235
The genetic basis of body weight in the mouse was investigated by measuring frequency changes of microsatellite marker alleles in lines divergently selected for body weight from a base population of a cross between two inbred strains. In several regions of the genome, sharp peaks of frequency change at linked markers were detected, which suggested the presence of single genes of moderate effect, although in several other regions, significant frequency changes occurred over large portions of chromosomes. A method based on maximum likelihood was used to infer effects and map positions of quantitative trait loci (QTLs) based on genotype frequencies at one or more marker loci. Eleven QTLs with effects in the range 0.17-0.28 phenotypic standard deviations were detected; but under an additive model, these did not fully account for the observed selection response. Tests for the presence of more than one QTL in regions where there were large changes of marker allele frequency were mostly inconclusive.  相似文献   

17.
18.
19.
The demand for high quality rice represents a major issue in rice production. The primary components of rice grain quality include appearance, eating, cooking, physico-chemical, milling and nutritional qualities. Most of these traits are complex and controlled by quantitative trait loci (QTLs), so the genetic characterization of these traits is more difficult than that of traits controlled by a single gene. The detection and genetic identification of QTLs can provide insights into the genetic mechanisms underlying quality traits. Chromosome segment substitution lines (CSSLs) are effective tools used in mapping QTLs. In this study, we constructed 154 CSSLs from backcross progeny (BC3F2) derived from a cross between 'Koshihikari' (an Oryza sativa L. Ssp. Japonica variety) as the recurrent parent and 'Nona Bokra' (an O. Sativa L. Ssp. Indica variety) as the donor parent. In this process, we carried out marker-assisted selection by using 102 cleaved amplified polymorphic sequence and simple sequence repeat markers covering most of the rice genome. Finally, this set of CSSLs was used to identify QTLs for rice quality traits. Ten QTLs for rice appearance quality traits were detected and eight QTLs concerned physico-chemical traits. These results supply the foundation for further genetic studies and breeding for the improvement of grain quality.  相似文献   

20.
M. Bos  W. Scharloo 《Genetics》1973,75(4):695-708
An analysis was made of changes in mean and variance in some thorax selection lines. The decrease of mean thorax length in the stabilizing selection lines (S) was a consequence of a directional selection component, caused by the skewness of the frequency distributions. The slight or temporary increase of the phenotypic variance and the large increase of the mean value in the disruptive selection lines with random mating (D(R)) could be attributed to differences in reproduction between small and large flies (egg production and mating success). Phenotypic variability was high in two disruptive selection lines with compulsory mating of opposite extremes (D(-)). The mechanism of the change in variability was different in these replicate lines. In D(-)-1 the change was obtained by an increase of the environmental and the nonadditive genetic components of the variance. In D(-)-2 almost exclusively an increase of additive genetic variance occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号