首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferredoxin (Fd), which plays a pivotal role in photosynthesis as an electron carrier, forms a transient complex with various Fd-dependent enzymes, such as nitrite reductase (NiR), to achieve efficient intermolecular electron transfer. We studied the protein-protein interaction of Fd and NiR by NMR spectroscopy and determined three acidic regions of Fd to be major sites for the interaction with NiR, indicating that the complex is stabilized through electrostatic interaction. During this study, we found Fds from higher plant and cyanobacterium, in spite of their high structural similarities including the above acidic regions, differ remarkably in the interaction with cyanobacterial NiR. In activity assay of NiR, K(m) value for maize Fd (74.6 μM) was 9.6 times larger than that for Leptolyngbya boryana Fd (7.8 μM). The two Fds also showed a similar difference in binding assay to NiR-immobilized resin. Comparative site-specific mutagenesis of two Fds revealed that their discriminative ability for the interaction with NiR is attributed mainly to non-charged residues in the peripheral region of [2Fe-2S] cluster. These non-charged residues are conserved separately between Fds of plant and cyanobacterial origins. Our data highlight that intermolecular force(s) other than electrostatic attraction is(are) also crucial for the molecular interaction between Fd and partner enzyme.  相似文献   

2.
In roots, nitrate assimilation is dependent upon a supply of reductant that is initially generated by oxidative metabolism including the pentose phosphate pathway (OPPP). The uptake of nitrite into the plastids and its subsequent reduction by nitrite reductase (NiR) and glutamate synthase (GOGAT) are potentially important control points that may affect nitrate assimilation. To support the operation of the OPPP there is a need for glucose 6-phosphate (Glc6P) to be imported into the plastids by the glucose phosphate translocator (GPT). Competitive inhibitors of Glc6P uptake had little impact on the rate of Glc6P-dependent nitrite reduction. Nitrite uptake into plastids, using (13)N labelled nitrite, was shown to be by passive diffusion. Flux through the OPPP during nitrite reduction and glutamate synthesis in purified plastids was followed by monitoring the release of (14)CO(2) from [1-(14)C]-Glc6P. The results suggest that the flux through the OPPP is maximal when NiR operates at maximal capacity and could not respond further to the increased demand for reductant caused by the concurrent operation of NiR and GOGAT. Simultaneous nitrite reduction and glutamate synthesis resulted in decreased rates of both enzymatic reactions. The enzyme activity of glucose 6-phosphate dehydrogenase (G6PDH), the enzyme supporting the first step of the OPPP, was induced by external nitrate supply. The maximum catalytic activity of G6PDH was determined to be more than sufficient to support the reductant requirements of both NiR and GOGAT. These data are discussed in terms of competition between NiR and GOGAT for the provision of reductant generated by the OPPP.  相似文献   

3.
Glutamate synthase (GOGAT) from Chlamydomonas reinhardtii is able to form functional covalent complexes with its substrate ferredoxin (Fd), either wild-type (WTFd) or recombinant form (rFd). However, when Fd carboxyl groups were chemically modified (mdFd), no complexes were detected and its ability to serve as electron donor for glutamate synthase activity was also decreased. By site-directed mutagenesis, we have demonstrated that Fd glu91 and a negative core in the helix α1 are critical for Fd interaction with this enzyme and its functionality as electron carrier for glutamate synthase. As a previous step to elucidate the specific positive charged residues involved in glutamate synthase interaction with Fd, we have isolated a cDNA, CrFG-3, encoding Fd-GOGAT from C. reinhardtii. The cDNA comprised about 60% of the protein and sequence comparison showed that CrFG-3 was structurally more similar to higher plant enzymes than to the corresponding prokaryotic GOGAT. Two conserved domains were present in this protein fragment, the FMN-binding domain and the cysteines involved in the iron–sulfur cluster binding. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2‐oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin‐dependent glutamate synthase (Fd‐GOGAT) and nicotinamide adenine dinucleotide (NADH)‐GOGAT. While Fd‐GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH‐GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH‐GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real‐time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH‐GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH‐GOGAT and Fd‐GOGAT did not fully overlap. Promoter–β‐glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH‐GOGAT was highly accumulated in non‐green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH‐GOGAT transfer DNA (T‐DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH‐GOGAT in the ammonium assimilation in Arabidopsis roots.  相似文献   

5.
Two pathways of ammonium assimilation and glutamate biosynthesis have been identified in microorganisms. One pathway involves the NADP-linked glutamate dehydrogenase, which catalyzes the amination of 2-oxoglutarate to form glutamate. An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. We have cloned the large subunit of the glutamate synthase (GOGAT) from Salmonella typhimurium by screening the expression of GOGAT and complementing the gene in E. coli GOGAT large subunit-deficient mutants. Three positive clones (named pUC19C12, pUC19C13 and pUC19C15) contained identical Sau3AI fragments, as determined by restriction mapping and Southern hybridization, and expressed GOGAT efficiently and constitutively using its own promoter in the heterologous host. The coding region expressed in Escherichia coli was about 170 kDa on SDS-PAGE. This gene spans 4,732 bases, contains an open reading frame of 4,458 nucleotides, and encodes a mature protein of 1,486 amino acid residues (Mr = 166,208). The FMN-binding domain of GOGAT contains 12 glycine residues, and the 3Fe-4S cluster has 3 cysteine residues. The comparison of the translated amino acid sequence of the Salmonella GOGAT with sequences from other bacteria such as Escherichia coli, Salmonella enterica, Shigella flexneri, Yersinia pestis, Vibrio vulnificus and Pseudomonas aeruginosa shows sequence identity between 87 and 95%.  相似文献   

6.
The two [4Fe-4S] clusters F(A) and F(B) are the terminal electron acceptors of photosystem I (PSI) that are bound by the stromal subunit PsaC. Soluble ferredoxin (Fd) binds to PSI via electrostatic interactions and is reduced by the outermost iron-sulfur cluster of PsaC. We have generated six site-directed mutants of the green alga Chlamydomonas reinhardtii in which residues located close to the iron-sulfur clusters of PsaC are changed. The acidic residues Asp(9) and Glu(46), which are located one residue upstream of the first cysteine liganding cluster F(B) and F(A), respectively, were changed to a neutral or a basic amino acid. Although Fd reduction is not affected by the E46Q and E46K mutations, a slight increase of Fd affinity (from 1.3- to 2-fold) was observed by flash absorption spectroscopy for the D9N and D9K mutant PSI complexes. In the FA(2) triple mutant (V49I/K52T/R53Q), modification of residues located next to the F(A) cluster leads to partial destabilization of the PSI complex. The electron paramagnetic resonance properties of cluster F(A) are affected, and a 3-fold decrease of Fd affinity is observed. The introduction of positively charged residues close to the F(B) cluster in the FB(1) triple mutant (I12V/T15K/Q16R) results in a 60-fold increase of Fd affinity as measured by flash absorption spectroscopy and a larger amount of PsaC-Fd cross-linking product. The first-order kinetics are similar to wild type kinetics (two phases with t((1)/(2)) of <1 and approximately 4.5 microseconds) for all mutants except FB(1), where Fd reduction is almost monophasic with t((1)/(2)) < 1 microseconds. These data indicate that F(B) is the cluster interacting with Fd and therefore the outermost iron-sulfur cluster of PSI.  相似文献   

7.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

8.
Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.  相似文献   

9.
Cellular compartmentation of ammonium assimilation in rice and barley   总被引:9,自引:0,他引:9  
This review describes immunolocalization studies of the tissue and cellular location of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (Fd GOGAT; EC 1.4.7.1 and NADH-GOGAT; EC 1.4.1.14) proteins in roots and leaves of rice (Oryza sativa L.) and barley (Hordeum vulgare L.). In rice, cytosolic GS (GS1) protein was distributed homogeneously through all cells of the root. NADH GOGAT protein was strongly induced and its cellular location altered by ammonium treatment, becoming concentrated within the epidermal and exodermal cells. Fd GOGAT protein location changed with root development, from a widespread distribution in young cells to becoming concentrated within the central cylinder as cells matured. Plastid GS protein was barely detectable in rice roots, but was the major isoform in leaves, being present in the mesophyll and parenchyma sheath cells. GS1 was specific to the vascular bundle, as was NADH GOGAT, whereas Fd GOGAT was primarily found in mesophyll cells. In barley roots, GS1 protein was found in the cortical and vascular parenchyma and its concentration was highest in N-deficient seedlings. Plastid GS protein was detected in both cortical and vascular cells, where different plastid forms, containing different concentrations of GS protein, were identified. In barley leaves, GS2 protein was detected in the mesophyll chloroplasts and GS1 was found in the mesophyll and vascular cells. N nutrition strongly influenced this distribution, with a marked increase in GS1 concentration in the vascular cells in response to nitrate and ammonium, and an increase in mesophyll GS2 concentration in nitrate-grown seedlings. Fd GOGAT protein was found in both the mesophyll and vascular plastids. These localization studies show that the GS/GOGAT cycle is highly compartmentalized at both the subcellular and cellular levels. Reasons for this compartmentation, and the roles of each isoform, are discussed.  相似文献   

10.
Glutamate synthesis in Streptomyces coelicolor.   总被引:3,自引:2,他引:1       下载免费PDF全文
Both glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) are involved in glutamate synthesis in Streptomyces coelicolor. The highest levels of GDH were seen in extracts of cells grown with high levels of ammonium as the nitrogen source. GOGAT activity was reduced two- to threefold in extracts of cells grown with good sources of glutamate. S. coelicolor mutants deficient in GOGAT (Glt-) required glutamate for growth with L-alanine, asparagine, arginine, or histidine as the nitrogen source but grew like wild-type cells when ammonium, glutamine, or aspartate was the nitrogen source. The glt mutations were tightly linked to hisA1. Mutants deficient in both GOGAT and GDH (Gdh-) required glutamate for growth in all media. The gdh-5 mutation was mapped to the left region of the S. coelicolor chromosomal map, between proA1 and uraA1.  相似文献   

11.
A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.  相似文献   

12.
13.
PsaC is the stromal subunit of photosystem I (PSI) which binds the two terminal electron acceptors FA and FB. This subunit resembles 2[4Fe-4S] bacterial ferredoxins but contains two additional sequences: an internal loop and a C-terminal extension. To gain new insights into the function of the internal loop, we used an in vivo degenerate oligonucleotide-directed mutagenesis approach for analysing this region in the green alga Chlamydomonas reinhardtii. Analysis of several psaC mutants affected in PSI function or assembly revealed that K35 is a main interaction site between PsaC and ferredoxin (Fd) and that it plays a key role in the electrostatic interaction between Fd and PSI. This is based upon the observation that the mutations K35T, K35D and K35E drastically affect electron transfer from PSI to Fd, as measured by flash-absorption spectroscopy, whereas the K35R change has no effect on Fd reduction. Chemical cross-linking experiments show that Fd interacts not only with PsaD and PsaE, but also with the PsaC subunit of PSI. Replacement of K35 by T, D, E or R abolishes Fd cross-linking to PsaC, and cross-linking to PsaD and PsaE is reduced in the K35T, K35D and K35E mutants. In contrast, replacement of any other lysine of PsaC does not alter the cross-linking pattern, thus indicating that K35 is an interaction site between PsaC and its redox partner Fd.  相似文献   

14.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) is the last enzyme involved in the pathway of nitrate assimilation in higher plants. This paper describes the synthesis and expression of the enzyme in anaerobic coleoptiles of rice (Oryza sativa L.) and its regulation by exogenous nitrate. The activity of Fd-GOGAT was strongly inhibited by cycloheximide between 4 and 9 d of anaerobic germination. The addition of nitrate slightly increased, in the first 5 h, the specific activity of Fd-GOGAT as well as the amount of a 160-kDa protein specifically immunoprecipitated with anti-Fd-GOGAT serum. Northern blot analysis, performed with a specific riboprobe, showed the presence of mRNA of the expected size and the inductive effect of nitrate. The role of Fd-GOGAT is discussed in relation to the anaerobic assimilation of nitrate by rice coleoptiles.Abbreviations CHX cycloheximide - Fd ferredoxin - GOGAT glutamate synthase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase The authors wish to thank Dr. J. Turner (Rothamsted Experimental Station, Harpenden, UK) for providing Fd-GOGAT antibody and Dr. H. Sakakibara (Nagoya University, Nagoya, Japan) for Fd-GOGAT clone. This research was supported by the National Research Council of Italy, special project RAISA, sub-projekt N. 2, paper N. 2174.  相似文献   

15.
In the ferredoxin-NADP(+) reductase (FNR)/ferredoxin (Fd) system, an aromatic amino acid residue on the surface of Anabaena Fd, Phe-65, has been shown to be essential for the electron transfer (ET) reaction. We have investigated further the role of hydrophobic interactions in complex stabilization and ET between these proteins by replacing three hydrophobic residues, Leu-76, Leu-78, and Val-136, situated on the FNR surface in the vicinity of its FAD cofactor. Whereas neither the ability of FNR to accept electrons from NADPH nor its structure appears to be affected by the introduced mutations, different behaviors with Fd are observed. Thus, the ET interaction with Fd is almost completely lost upon introduction of negatively charged side chains. In contrast, only subtle changes are observed upon conservative replacement. Introduction of Ser residues produces relatively sizable alterations of the FAD redox potential, which can explain the modified behavior of these mutants. The introduction of bulky aromatic side chains appears to produce rearrangements of the side chains at the FNR/Fd interaction surface. Thus, subtle changes in the hydrophobic patch influence the rates of ET to and from Fd by altering the binding constants and the FAD redox potentials, indicating that these residues are especially important in the binding and orientation of Fd for efficient ET. These results are consistent with the structure reported for the Anabaena FNR.Fd complex.  相似文献   

16.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

17.
Nitrogen assimilation in plants: current status and future prospects   总被引:1,自引:0,他引:1  
Nitrogen(N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency(NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase(NR), nitrite redu...  相似文献   

18.
Polyclonal antiserum specific for ferredoxin-nitrite reductase (EC 1.7.7.1) from the green alga Chlamydomonas reinhardii recognized the nitrite reductase from other green algae, but did not cross-react with the corresponding enzyme from different cyanobacteria or higher plant leaves. An analogous situation was also found for ferredoxin-glutamate synthase (EC 1.4.7.1), using its specific antiserum. Besides, the antibodies raised against C. reinhardii ferredoxin-glutamate synthase were able to inactivate the ferredoxin-dependent activity of nitrite reductase from green algae.These results suggest that there exist similar domains in ferredoxin-nitrite reductases and ferredoxin-glutamate synthases from green algae. In addition, both types of enzymes share common antigenic determinants, probably located at the ferredoxin-binding domain. In spite of their physicochemical resemblances, no apparent antigenic correlation exists between the corresponding enzymes from green algae and those from higher plant leaves or cyanobacteria.Abbreviations Fd ferredoxin - GOGAT glutamate synthase - MV+ reduced methyl viologen (radical cation) - NiR nitrite reductase - PMSF phenylmethylsulphonyl fluoride - SDS sodium dodecyl sulfate  相似文献   

19.
20.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号