首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During intracellular parasitic infections, pathogens and host cells take part in a complex web of events that are crucial for the outcome of the infection. Modulation of host cell apoptosis by pathogens attracted the attention of scientists during the last decade. Apoptosis is an efficient mechanism used by the host to control infection and limit pathogen multiplication and dissemination. In order to ensure completion of their complex life cycles and to guarantee transmission between different hosts, intracellular parasites have developed mechanisms to block apoptosis and sustain the viability of their host cells. Here, we review how some of the most prominent intracellular protozoan parasites modulate the main mammalian apoptotic pathways by emphasizing the advances from the last decade, which have begun to dissect this dynamic and complex interaction.  相似文献   

2.
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.  相似文献   

3.
Elimination of infected cells via programmed cell death plays a fundamental role in the defense of multicellular organisms against bacteria, viruses, and parasites. Several pathogens have therefore evolved sophisticated strategies to modulate the host cell death programme for their survival. This review aims to summarize recent findings on how bacterial pathogens interfere with the host cell death apparatus.  相似文献   

4.
Autophagy plays an important role in the defence against intracellular pathogens. However, some microorganisms can manipulate this host cell pathway to their advantage. In this study, we addressed the role of host cell autophagy during Plasmodium berghei liver infection. We show that vesicles containing the autophagic marker LC3 surround parasites from early time‐points after invasion and throughout infection and colocalize with the parasitophorous vacuole membrane. Moreover, we show that the LC3‐positive vesicles that surround Plasmodium parasites are amphisomes that converge from the endocytic and autophagic pathways, because they contain markers of both pathways. When the host autophagic pathway was inhibited by silencing several of its key regulators such as LC3, Beclin1, Vps34 or Atg5, we observed a reduction in parasite size. We also found that LC3 surrounds parasites in vivo and that parasite load is diminished in a mouse model deficient for autophagy. Together, these results show the importance of the host autophagic pathway for parasite development during the liver stage of Plasmodium infection.  相似文献   

5.
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.  相似文献   

6.
Many intracellular microbial pathogens subvert, disrupt or otherwise modulate host membrane trafficking pathways to establish a successful infection. Among them, bacteria that are trapped in a phagosome during mammalian cell invasion, disengage the programmed degradation process by altering the identity of their replicative niche through the exclusion or recruitment of specific Rab GTPases to their vacuole. Many viruses co-opt essential cellular trafficking pathways to perform key steps in their lifecycles. Among protozoan parasites, Apicomplexa are obligate intracellular microbes that invade mammalian cells by creating a unique, nonfusogenic membrane-bound compartment that protects the parasites straightaway from lysosomal degradation. Recent compelling evidence demonstrates that apicomplexan parasites are master manipulators of mammalian Rab GTPase proteins, and benefit or antagonise Rab functions for development within host cells. This review covers the exploitation of mammalian Rab proteins and vesicles by Apicomplexa, focusing on Toxoplasma, Neospora, Plasmodium and Theileria parasites.  相似文献   

7.
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.  相似文献   

8.
9.
The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.  相似文献   

10.
Lipid droplets (LDs) are highly dynamic cell organelles involved in energy homeostasis and membrane trafficking. Here, we review how select pathogens interact with LDs. Several RNA viruses use host LDs at different steps of their life cycle. Some intracellular bacteria and parasites usurp host LDs or encode their own lipid biosynthesis machinery, thus allowing production of LDs independently of their host. Although many mechanistic details of host/pathogen LD interactions are unknown, a picture emerges in which the unique cellular architecture and energy stored in LDs are important in the replication of diverse pathogens.  相似文献   

11.
Programmed cell death (apoptosis) is an important regulator of the host's response during infection with a variety of intracellular protozoan parasites. Parasitic pathogens have evolved diverse strategies to induce or inhibit host-cell apoptosis, thereby modulating the host's immune response, aiding dissemination within the host or facilitating intracellular survival. Here, we review the molecular and cell-biological mechanisms of the pathogen-induced modulation of host-cell apoptosis and its effects on the parasite-host interaction and the pathogenesis of parasitic diseases. We also discuss the previously unrecognized phenomenon of apoptotic cell death in (unicellular) protozoan parasites and its potential implications.  相似文献   

12.
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.  相似文献   

13.
Both parasitology and stem cell research are important disciplines in their own right. Parasites are a real threat to human health causing a broad spectrum of diseases and significant annual rates morbidity and mortality globally. Stem cell research, on the other hand, focuses on the potential for regenerative medicine for a range of diseases including cancer and regenerative therapies. Though these two topics might appear distant, there are some "unexpected encounters". In this review, we summarise the various links between parasites and stem cells. First,we discuss how parasites' own stem cells represent interesting models of regeneration that can be translated to human stem cell regeneration. Second, we explore the interactions between parasites and host stem cells during the course of infection. Third, we investigate from a clinical perspective, how stem cell regeneration can be exploited to help circumvent the damage induced by parasitic infection and its potential to serve as treatment options for parasitic diseases in the future. Finally, we discuss the importance of screening for pathogens during organ transplantation by presenting some clinical cases of parasitic infection following stem cell therapy.  相似文献   

14.
Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.  相似文献   

15.
Activation of apoptosis is one of the most ancient mechanisms to eliminate intracellular infections; the capacity to subvert this programed cell death provides an adaptive advantage to pathogens that persist in an intracellular environment. Leishmania species are obligate intracellular parasites that primarily reside within host macrophages. We demonstrate here that Leishmania infection protects macrophages from cycloheximide-induced apoptosis in a species and strain specific manner. Our data further reveal that Leishmania phosphoglycans and direct contact between parasites and host cells are required for the inhibitory phenotype.  相似文献   

16.
Wenk MR 《FEBS letters》2006,580(23):5541-5551
The cell biology of intracellular pathogens (viruses, bacteria, eukaryotic parasites) has provided us with molecular information of host-pathogen interactions. As a result it is becoming increasingly evident that lipids play important roles at various stages of host-pathogen interactions. They act in first line recognition and host cell signaling during pathogen docking, invasion and intracellular trafficking. Lipid metabolism is a housekeeping function in energy homeostasis and biomembrane synthesis during pathogen replication and persistence. Lipids of enormous chemical diversity play roles as immunomodulatory factors. Thus, novel biochemical analytics in combination with cell and molecular biology are a promising recipe for dissecting the roles of lipids in host-pathogen interactions.  相似文献   

17.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

18.
Members of the phylum Apicomplexa are motile and rapidly dividing intracellular parasites, able to occupy a large spectrum of niches by infecting diverse hosts and invading various cell types. As obligate intracellular parasites, most apicomplexans only survive for a short period extracellularly, and, during this time, have a high energy demand to power gliding motility and invasion into new host cells. Similarly, these fast‐replicating intracellular parasites are critically dependent on host‐cell nutrients as energy and carbon sources, noticeably for the extensive membrane biogenesis imposed during growth and division. To access host‐cell metabolites, the apicomplexans Toxoplasma gondii and Plasmodium falciparum have evolved strategies that exquisitely reflect adaptation to their respective niches. In the present review, we summarize and compare some recent findings regarding the energetic metabolism and carbon sources used by these two genetically tractable apicomplexans during host‐cell invasion and intracellular growth and replication.  相似文献   

19.
Building a mathematical model of population dynamics of pathogens within their host involves considerations of factors similar to those in ecology, as pathogens can prey on cells in the host. But within the multicellular host, attacked cell types are integrated with other cellular systems, which in turn intervene in the infection. For example, immune responses attempt to sense and then eliminate or contain pathogens, and homeostatic mechanisms try to compensate for cell loss. This review focuses on modeling applied to malarias, diseases caused by single-cell eukaryote parasites that infect red blood cells, with special concern given to vivax malaria, a disease often thought to be benign (if sometimes incapacitating) because the parasite only attacks a small proportion of red blood cells, the very youngest ones. However, I will use mathematical modeling to argue that depletion of this pool of red blood cells can be disastrous to the host if growth of the parasite is not vigorously check by host immune responses. Also, modeling can elucidate aspects of new field observations that indicate that vivax malaria is more dangerous than previously thought.  相似文献   

20.
Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti‐immunity strategy, is an intriguing question meriting further investigation in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号