首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freezing avoidance in Andean giant rosette plants   总被引:3,自引:1,他引:2  
Abstract Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around - 5°C coinciding with the injury temperature. Supercooling points of about –13 to - 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.  相似文献   

2.
Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below −37°C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.  相似文献   

3.
The frost survival mechanism of vegetative buds of angiosperms was suggested to be extracellular freezing causing dehydration, elevated osmotic potential to prevent freezing. However, extreme dehydration would be needed to avoid freezing at the temperatures down to ?45°C encountered by many trees. Buds of Alnus alnobetula, in common with other frost hardy angiosperms, excrete a lipophilic substance, whose functional role remains unclear. Freezing of buds was studied by infrared thermography, psychrometry, and cryomicroscopy. Buds of Aalnobetula did not survive by extracellular ice tolerance but by deep supercooling, down to ?45°C. An internal ice barrier prevented ice penetration from the frozen stem into the bud. Cryomicroscopy revealed a new freezing mechanism. Until now, supercooled buds lost water towards ice masses that form in the subtending stem and/or bud scales. In Aalnobetula, ice forms harmlessly inside the bud between the supercooled leaves. This would immediately trigger intracellular freezing and kill the supercooled bud in other species. In Aalnobetula, lipophilic substances (triterpenoids and flavonoid aglycones) impregnate the surface of bud leaves. These prevent extrinsic ice nucleation so allowing supercooling. This suggests a means to protect forestry and agricultural crops from extrinsic ice nucleation allowing transient supercooling during night frosts.  相似文献   

4.
  • 1.1. The ability to tolerate extracellular freezing as an adaptation for winter survival was tested in seven species of terrestrially-hibernating amphibians found in eastern Canada.
  • 2.2. All species had only moderate supercooling abilities, with whole animal supercooling points of −1.5 to −3°C.
  • 3.3. Two salamander species, Plethodon cinereus and Ambystoma laterale, and the toad, Bufo americamts, were freezing intolerant and were killed when frozen for 24 hr at temperatures just below their supercooling points. The major winter strategy of these animals appears to be behavioural avoidance of subzero temperatures.
  • 4.4. Four species of frogs Rana sylvatica, Hyla versicolor, Hyla crucifer and Pseudacris triseriata, survived extracellular freezing at moderate subzero temperatures (−2 to −4°C) for periods of time ranging up to 2 weeks.
  • 5.5. All four frog species accumulated low molecular weight carbohydrates as cryoprotectants, glycerol being the major cryoprotectant in adult H. versicolor, while immature adults of this species as well as the other three species all produced high levels of glucose as the cryoprotectant.
  相似文献   

5.
Cold tolerance and dehydration in Enchytraeidae from Svalbard   总被引:4,自引:1,他引:3  
When cooled in contact with moisture, eight species of arctic Enchytraeidae from Svalbard were killed by freezing within minutes or hours at −3 and −5 °C; an exception was Enchytraeus kincaidi which survived for up to 2 days. When the temperature approached 0 °C the enchytraeids apparently tried to escape from the moist soil. The supercooling capacity of the enchytraeids was relatively low, with mean supercooling points of −5 to −8 °C. In contrast, specimens of several species were extracted from soil cores that had been frozen in their intact state at −15 °C for up to 71 days. Compared to freezing in a moist environment, higher survival rates were obtained during cooling at freezing temperatures in dry soil. Survival was recorded in species kept at −3 °C for up to 35 days, and in some species kept at −6 °C for up to 17 days. Slow warming greatly increased survival rates at −6 °C . The results strongly suggest that arctic enchytraeids avoid freezing by dehydration at subzero temperatures. In agreement with this, weight losses of up to ca. 42% of fresh weight were recorded in Mesenchytraeus spp. and of up to 55% in Enchytraeus kincaidi at water vapour pressures above ice at −3 to −6 °C. All specimens survived dehydration under these conditions. Accepted: 12 December 1997  相似文献   

6.
K R Diller 《Cryobiology》1975,12(5):480-485
Human erythrocytes were frozen on the stage of a cryomicroscope at accurately controlled constant-cooling rates with varying degrees of extracellular supercooling. The formation of intracellular ice was detected by direct observation of the frozen cells through the microscope. A significant coupling effect was determined between the minimum cooling rate necessary to produce intracellular freezing and the extent of supercooling. Increased degrees of extracellular supercooling reduced the range of cooling rates for which water would freeze within the cell. Specific data points were obtained at ΔTSC = 0, ?5, and ?12 °C for which the corresponding transition cooling rates were respectively ?845, ?800, and ?11 °C/min.An explanation for the occurrence of this phenomenon is presented based on the physiochemical processes that govern the freezing of a cell suspension.  相似文献   

7.
Intracellular freezing of glycerolized red cells.   总被引:1,自引:0,他引:1  
K R Diller 《Cryobiology》1979,16(2):125-131
The response of glycerolized human red blood cells to freezing has been evaluated in terms of the thermodynamic state of the frozen intracellular medium. The physiochemical conditions requisite for intracellular freezing, characterized by the cooling rate and the degree of extracellular supercooling, are altered appreciably by the prefreezing addition of glycerol to the cells.Fresh human erythrocytes were suspended in an isotonic glycerol solution yielding a final cryophylactic concentration of either 1.5 or 3.0 m. Subsequently the cell suspension was frozen on a special low temperature stage, mounted on a light microscope, at controlled constant cooling rates with varying degrees of extracellular supercooling (ΔTsc). The formation of a pure intracellular ice phase was detected by direct observation of the cells.The addition of glycerol produced several significant variations in the freezing characteristics of the blood. As in unmodified cells, the incidence of intracellular freezing increased with the magnitudes of both the cooling rate and the extracellular supercooling. However, the glycerolized cells exhibited a much greater tendency to supercool prior to the initial nucleation of ice. Values of ΔTsc > ?20 °C were readily obtained. Also, the transition from 0 to 100% occurrence of intracellular ice covered a cooling rate spectrum in excess of 300 to 600 °K/min, as compared with 10 °C/min for unmodified cells. Thus, the incidence of intracellular ice formation was significantly increased in glycerolized cells.  相似文献   

8.
《Cryobiology》1987,24(2):140-147
Terrestrial arthropods of the maritime Antarctic experience a diverse range of environmental Stressors including extended periods of ice and snow cover, anoxia, immersion in water of variable pH and salinity, and extensive habitat drying. The collembolan Cryptopygus antarcticus and the mite Alaskozetes antarcticus seasonally depress whole body supercooling points to avoid the lethal effects of freezing. Alternatively, the wingless chironomid Belgica antarctica has a relatively limited supercooling capacity (between −6 and −8 °C) and tolerates extracellular freezing. The lower limit of freeze tolerance remains unchanged near −13 °C throughout the year in B. antarctica. Summer larvae tolerate dehydration to a limit of 35% of initial body weight as well as extended periods of anoxia and immersion in freshwater and saltwater. Two weeks of exposure to variable pH (3–12) induced no mortality.  相似文献   

9.
Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively low elevation in Hawaii compared with continental tree lines, which can be up to 1500 m higher. If the elevation of tree line is influenced by the inability of M. polymorpha leaves to supercool to lower subzero temperatures, then it will be the first example that freezing damage resulting from limited supercooling capacity can be a factor in tree line formation.  相似文献   

10.
The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.  相似文献   

11.
Insect antifreezes and ice-nucleating agents   总被引:2,自引:0,他引:2  
John G. Duman 《Cryobiology》1982,19(6):613-627
Cold-tolerant, freeze-susceptible insects (those which die if frozen) survive subzero temperatures by proliferating antifreeze solutes which lower the freezing and supercooling points of their body fluids. These antifreezes are of two basic types. Lowmolecular-weight polyhydroxy alcohols and sugars depress the freezing point of water on a colligative basis, although at higher concentrations these solutes may deviate from linearity. Recent studies have shown that these solutes lower the supercooling point of aqueous solutions approximately two times more than they depress the freezing point. Consequently, if a freeze-susceptible insect accumulates sufficient glycerol to lower the freezing point by 5 °C, then the glycerol should depress the insect's supercooling point by 10 °C.Some cold-tolerant, freeze-susceptible insects produce proteins which produce a thermal hysteresis (a difference between the freezing and melting point) of several degrees in the body fluids. These thermal hysteresis proteins (THPs) are similar to the antifreeze proteins and glycoproteins of polar marine teleost fishes. The THPs lower the freezing, and presumably the supercooling, point by a noncolligative mechanism. Consequently, the insect can build up these antifreezes, and thereby gain protection from freezing, without the disruptive increases in osmotic pressure which accompany the accumulation of polyols or sugars. Therefore the THPs can be more easily accumulated and maintained during warm periods in anticipation of subzero temperatures. It is not surprising then that photoperiod, as well as temperature, is a critical environmental cue in the control of THP levels in insects.Some species of freeze-tolerant insects also produce THPs. This appears somewhat odd, since most freeze-tolerant insects produce ice nucleators which function to inhibit supercooling and it is therefore not clear why such an insect would produce antifreeze proteins. It is possible that the THPs have an alternate function in these species. However, it also appears that the THPs function as antifreezes during those periods of the year when these insects are not freeze tolerant (i.e., early autumn and spring) but when subzero temperatures could occur. In addition, at least one freeze-tolerant insect which produces THPs, Dendroides canadensis, typically loses freeze tolerance during midwinter thaws and then regains tolerance. The THPs could be important during those periods when Dendroides loses freeze tolerance by making the insect less susceptible to sudden temperature decreases.Comparatively little is known of the biochemistry of insect THPs. However, comparisons of those few insect THPs which have been purified with the THPs of fishes show some interesting differences. The insect THPs lack the large alanine component commonly found in the fish THPs. In addition, the insect THPs generally contain greater percentages of hydrophilic amino acids than do those of the fish. Perhaps the most interesting insect THPs are those from Tenebrio molitor which have an extremely large cysteine component (28% in one THP). Studies on the primary and higher-order structure of the insect THPs need to be carried out so that more critical comparisons with the fish THPs can be made. This may provide important insights into the mechanisms of freezing point and supercooling point depression exhibited by these molecules. In addition, comparative studies of the freezing and supercooling point depressing activities of the various THPs, in relation to their structures, should prove most interesting.It has become increasingly apparent over the last few years that most freeze-tolerant insects, unlike freeze-susceptible species, inhibit supercooling by accumulating ice-nucleating agents in their hemolymph. These nucleators function to ensure that ice formation occurs in the extracellular fluid at fairly high temperatures, thereby minimizing the possibility of formation of lethal intracellular ice. Little is known of the nature of the insect ice-nucleating agents. Those few which have been studied are heat sensitive and nondialyzable and are inactivated by proteolytic enzymes, thus indicating that they are proteinaceous. Studies on the structure-function relationships of these unique molecules should be done.  相似文献   

12.
Abstract

FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above ?15°C, whereas membrane phase changes may continue until temperatures as low as ?30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to ?10°C was found to be greater than that below ?10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min-1, ~5% of the initial osmotically active water volume is trapped inside the cells at ?30°C.  相似文献   

13.
Large numbers of European ash have died in Poland in all age classes during the last ten years. The characteristic symptom occurring on shoots of planted and self‐sown seedlings was bark necroses starting from the shoot apex, necrotic buds, or leaf and twig scars. The results showed that in the bud tissue of cold acclimated European ash extracellular and intracellular ice formation occurred at approximately ?9 and ?32°C, respectively. In deacclimated plants in spring water supercooling is limited by the heterogenous ice nucleation temperature and consequently the cold tolerance is ?9 to ?4°C for bud tissues and ?13 to ?9°C for shoots. Isolations of fungi were performed from dead buds and from necroses occurring on the main stem. Alternaria alternata, Fusarium lateritium and Phomopsis scobina were among the fungi occurring in both these organs at frequencies of more than 7%. Cylindrocarpon heteronemum, Diplodia mutila and Tubercularia vulgaris from necroses were only isolated in frequencies; 3.3, 1.2 and 5.4%, respectively. It seems likely that freezing injury is the inciting factor, which combined with fungal colonization manifests itself as fatal damage to European ash buds and shoots.  相似文献   

14.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

15.
Abstract. Ecophysiological features, including survival and recovery from freezing and determination of the freezable water content, are reported for a cold-adapted cockroach Celatoblatta quinquemaculata Johns 1966 (Dictyoptera, Blattidae) inhabiting alpine communities at altitudes greater than 1300 m a.s.l. in mountains of Central Otago, New Zealand. Nymphs ranged from 15 to 51 mg live weight of which 67% was water. Cockroaches had a mean supercooling point temperature of ?5.4 ± 0.1°C; with recovery from freezing close to this temperature being rapid, but no recovery was observed when frozen at ?9 to ?10°C. The duration of exposure to freezing conditions and the time allowed for recovery (24–96 h) both influenced individual recovery and subsequent survival. Comparison of supercooling point data and survival shows that this species possesses a few degrees of freeze tolerance, and individuals have been found frozen in the field when subzero temperatures occur. Differential scanning calorimetry showed ≈ 74% of body water froze during cooling and between 24 and 27% of total body water was osmotically inactive (unfreezable under the experimental conditions). Carbohydrates, other than glucose at 7.5μg/mg fresh weight, were in low concentrations in the body fluids, suggesting little cryoprotection. No thermal hysteresis from antifreeze protein activity was detected in haemolymph samples using calorimetric techniques. It is suggested that slow environmental cooling rates, together with high individual supercooling points, confer a small amount of freezing tolerance on this species enabling it to survive low winter temperatures. This has allowed it to colonize and maintain populations in alpine habitats > 1300 m a.s.1. in New Zealand.  相似文献   

16.
Eggs of the stonefly, Arcynopteryx compacta, that overwinter in the alpine region of Norwegian mountains, increase their cold-hardiness by dehydration. Eggs enclosed in ice at −22°C survive the loss of about two-thirds of their total water content by shrinkage due to passive diffusion of body water along the concentration gradient. Fully hydrated eggs are killed by freezing at their supercooling point of −26°C, and by direct cooling to −30°C. Dehydrated eggs have a mean supercooling point of −31°C, and survive exposure at −27 and −29°C in ice. Judged from their melting points the eggs do not accumulate low-molecular-weight cryoprotective substances. The difference between freezing and melting points corresponds to a thermal hysteresis of up to 1.8°C. The presence of thermal hysteresis antifreezes may stabilize their supercooled state when enclosed by ice during overwintering. The eggs enter diapause in the autumn, and diapause completion is enhanced both by temperature and time during enclosure in ice.  相似文献   

17.
Abstract Diapause larvae of the European corn borer (Ostrinia nubilalis (Hubn.)) and the related Mediterranean noctuid Sesamia cretica Led. possess sufficient supercooling ability to avoid freezing over their normal environmental temperature ranges. In progressive chilling experiments (10 days acclimation at each 5° step in the temperature range from 15 to ?5°C), mean supercooling points (measured at a cooling rate of 0.1°C min?1) were lowered from ?20.4°C at 15°C to ?24.0°C at 5°C (lower lethal temperatures: c.?28°C) in O.nubilalis, compared with ?15.0 to ?17.2°C (lower lethal temperatures: ?15 to ?17°C respectively) in S.cretica. Concentrations of glycerol and trehalose determined by gas chromatography of whole body extracts were consistently higher in the former than in the latter species at both 15 and 5°C, and may be responsible for the deeper supercooling in O.nubilalis larvae. Acclimation to 5°C increased glycerol levels in O. nubilalis extracts compared with 15°C, and this was enhanced in larvae exposed for a further 10 days at each of 0 and ?5°C (glycerol being 438μmol ml?1 body water). Haemolymph glycerol concentrations showed a similar pattern to whole body extracts in this species. Fat body glycogen was reduced during low temperature acclimation in both species. Body water contents did not change with acclimation in O.nubilalis, whilst S.cretica, containing significantly more water, lost c.7% during acclimation from 15 to 5°C. Haemolymph osmolalities increased during acclimation, especially in Ostrinia larvae, probably as a result of the accumulation of cryoprotectants. The majority of O.nubilalis larvae survived freezing under the conditions of the cooling experiments, whilst larvae of S.cretica did not, thereby confirming an element of freezing tolerance in the former.  相似文献   

18.
Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to ?50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At ?18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (?0.1 MPa K?1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis.  相似文献   

19.
The time course of freezing damage in pine needles and in bark of apple trees was followed at different subzero temperatures. From these data the killing rate by freezing was determined for trees which differed in degree of cold hardiness. The activation energy of the killing reaction was also calculated. The killing rate was lowest in cold-acclimated trees, but the activation energy of the killing reaction was very high indicating a high degree of structured water in the cells. Non-acclimated trees showed uniform low values of the activation energy of the killing reaction at all subzero temperatures studied. It is suggested that intracellular supercooling could be a part of the mechanism of frost protection in cold-acclimated apple trees within the – 30 to – 20°C range, but not in the –20 to –10°C range.  相似文献   

20.
Specimens of the Arctic Collembolon Onychiurus arcticus were exposed to desiccation at several subzero temperatures over ice and at 0.5 °C over NaCl solutions. The effects of desiccation on water content (WC), body fluid melting point (MP), supercooling point (SCP) and survival were studied at several acclimation temperatures and relative humidities. Exposure to temperatures down to −19.5 °C caused a substantial and increasing dehydration. At the lowest exposure temperature unfrozen individuals lost 91.6% of the WC at full hydration but more than 80% of the individuals survived when rehydrated. Exposure at 0.5 °C to decreasing relative humidities (RH) from 100% to 91.3% caused increasing dehydration and increasing mortality. Survival of equally dehydrated individuals was higher at subzero temperatures than at 0.5 °C. Concurrent with the decline in WC a lowering of the MP was observed. Animals exposed to −3 °C and −6 °C over ice for 31 days had a MP of −3.8 and < −7.5 °C, respectively. Specimens from a laboratory culture had a mean SCP of −6.1 °C, and acclimation at 0 or −3 °C had little effect on SCPs. Exposure at −8.2 °C over ice for 8 days, however, caused the mean SCP to decline to −21.8 °C due to the severe dehydration of these individuals. Dehydration at 0.5 °C in 95.1 and 93.3% RH also caused a decline in SCPs to about −18 °C. Individuals that had been acclimated over ice at −12.4 °C or at lower temperatures apparently did not freeze at all when cooled to −30 °C, probably because all freezeable water had been lost. These results show that O. arcticus will inevitably undergo dehydration when exposed to subzero temperatures in its natural frozen habitat. Consequently, the MP and SCP of the Collembola are substantially lowered and in this way freezing is avoided. The increased cold hardiness by dehydration is similar to the protective dehydration mechanism described in earthworm cocoons and Arctic enchytraeids. Accepted: 5 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号