首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
【背景】新疆是全国最大的盐渍化土壤分布区,土壤盐渍化严重影响作物生长,耐盐促生菌可以有效改善土壤肥力,提高作物抗逆性,促进植物生长,提高土壤利用率。【目的】分离筛选获得木碱蓬(Suaeda dendroides)根际土壤中耐盐促生菌菌株,对优良促生作用的菌株进行分子鉴定,挖掘微生物资源,为微生物菌剂的研制奠定基础。【方法】采用传统的分离方法筛选获得木碱蓬根际耐盐微生物,采用"三级筛选体系"筛选获得耐盐促生菌菌株,用CTAB法提取菌株DNA,对菌株16S rRNA基因测序进行系统发育分析,确定耐盐促生菌菌株的分类地位。【结果】从木碱蓬根际共分离获得耐盐微生物58株,8株具有固氮活性,解磷活性菌株12株,具有解钾活性菌株15株,产IAA活性的菌株3株,具有较强产氨活性的菌株2株。经过促生平板筛选,菌株GTZW50-5和MH-F促进了拟南芥生长,表现出较好的促生效果,通过小麦盆栽试验,菌株GTZW50-5对小麦的根长以及株高具有显著的促生作用,在一定程度上提高了植物体内的叶绿素含量。MH-F菌株对小麦的根系具有较显著的促生作用,且对小麦的叶绿素及脯氨酸含量在不同盐浓度下都有所提高。经过系统发育分析,GTZW50-5与Bacillus vallismortis (AY603658)序列相似度达到99.43%,鉴定属于Bacillus vallismortis,MH-F与Enterobacterludwigii(JTLO01000001)序列相似度为98.34%,鉴定属于Enterobacter属。【结论】菌株GTZW50-5与MH-F均具有较好的促生效果,这为耐盐微生物资源的开发和利用提供了理论依据。  相似文献   

3.
4株茶树根际促生菌菌株的鉴定及促生作用   总被引:4,自引:1,他引:4  
【背景】根际促生菌可以促进植物生长、提高植物抗性。茶树根际具有特殊的根土微生物生境,可以获得具促生作用的有益微生物。【目的】探究4株茶树根际促生菌菌株的分类地位及促生作用,筛选优良的根际促生菌菌株。【方法】通过形态、生理生化特征、16S rRNA基因序列同源性比对鉴定4株茶树根际促生菌,采用钼锑抗比色法测定溶磷量,通过比色法测定ACC脱氨酶活性、CAS法测定产铁载体能力、Salkowski法测定产IAA (Indoleacetic acid)的能力进行促生作用研究,通过盆栽实验测试白菜、空心菜、苋菜及水稻的株高及鲜重以分析促生效应。【结果】鉴定KKS-6-N1为放射型土壤杆菌(Agrobacteriumradiobacter), KKS-7-N7为铜绿假单胞菌(Pseudomonas aeruginosa),GD3为Pseudomonashunanensis,GD12为弯曲芽孢杆菌(Bacillusflexus)。固氮菌株KKS-6-N1可产铁载体;固氮菌株KKS-7-N7具有解磷及产铁载体能力,分泌的IAA含量高达101.29mg/L;解钾菌株GD3具溶磷能力,分泌的ACC脱氨酶酶活为8.09μmol/(mg·h),相对铁载体含量为0.31;具固氮解钾性能的菌株GD12分泌的ACC脱氨酶活性为14.46μmol/(mg·h)。盆栽试验表明,4个菌株对白菜、空心菜、苋菜的株高和鲜重均有明显促进作用,尤以GD3效果更甚。【结论】茶树根际促生菌菌株Pseudomonas hunanensis GD3促生作用显著,具有开发成微生物菌肥的潜力。  相似文献   

4.
Plant root development can be largely affected through the association of roots with plant growth-promoting rhizobacteria (PGPR). However, little is known about the identity of plant genes enabling such PGPR-plant root associations. Differences in the responsiveness to PGPR among cultivars suggest genetic variation for this trait within germplasm. In this study, two genotypes of common bean (Phaseolus vulgaris L.), BAT477 and DOR364, were identified showing contrasting responsiveness in root development to inoculation with the PGPR Azospirillum brasilense Sp245. Inoculation with an A. brasilense Sp245 mutant strain strongly reduced in auxin biosynthesis or addition of increasing concentrations of exogenous auxin to the plant growth medium, indicated that the differential response to A. brasilense Sp245 among the bean genotypes is related to a differential response to the bacterial produced auxin. To further assess the role of the plant host in root responsiveness, a population of Recombinant Inbred Lines (RILs) of the DOR364×BAT477 cross was used to evaluate the efficacy of exogenous auxin on root development. We detected significant phenotypic variation among the RILs for basal root formation during germination upon addition of auxin to the growth medium. Genetic analysis revealed two quantitative trait loci (QTLs) associated with basal root responsiveness to auxin of which one explained 36% of the phenotypic variation among the RILs. This latter QTL mapped to the same location as a QTL for root tip formation at low P, suggesting that the host effect on root responsiveness to IAA interacts with specific root development. Also, significant correlations between basal root responsiveness to auxin and growth, root tips and root dry weight at low P were identified. To our knowledge, this is the first report on QTL detection for root responsiveness to auxin.  相似文献   

5.
棉花根际固氮菌、解磷菌及解钾菌的相互作用   总被引:3,自引:0,他引:3  
目的通过对棉花根际促生细菌N2126、P1108和K2116菌株单独接种和混合接种,根据这些菌株的固氮、解磷、解钾能力和细胞数量的变化,了解它们之间的相互作用。方法将这3株菌株设置4个不同的组合:N2126+P1108、P1108+K2116、N2126+K2116及N2126+P1108+K2116,分别测定培养液中全氮含量,水溶性磷、钾含量和细胞数量。结果P1108对N2126的生长有促进作用但抑制K2116的生长,N2126和K2116之间存在拮抗作用。N2126、P1108和K2116混合培养后,三者细胞数量分别占培养液中细胞总数的6.4%、89.2%和4.4%;培养液中的全氮含量比不接种时下降了0.7%;水溶性磷、钾含量比不接种时分别增加了19.0%和12.2%。结论P1108为3株菌株混合培养时的优势菌株,3株菌株混合培养有助于磷、钾释放。  相似文献   

6.
Reduction of tetrazolium salts by sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract The reduction of tetrazolium salts by the sulfate-reducing bacteria, Desulfovibrio desulfuricans and Desulfotomaculum orientis , was examined. D. desulfuricans and D. orientis reduced triphenyltetrazolium chloride (TTC) and 2-( p -iodophenyl)-3-( p -nitrophenyl)-5-phenyltetrazolium chloride (INT) forming intracellular formazan deposits. The reduction rate of INT was higher than that of TTC. INT reduction was not inhibited by the addition of sulfate or molybdate, and sulfate uptake was inhibited by the addition of both INT and molybdate. The ratio of intracellular formazan forming cells to acridine orange direct counts in both strains decreased with culture age and starvation time.  相似文献   

7.
8.
植物根际促生菌的筛选及其对玉米的促生效应   总被引:5,自引:1,他引:5  
[目的]以不同植物根及根际土壤为研究材料,进行植物根际促生菌(PGPR)的筛选,并探索其植物促生作用机制.[方法]以解磷、固氮、产氨、产IAA和拮抗3种常见病原真菌为筛选标准,测定了初筛菌株的多项促生能力,并通过对这些菌分别单独回接和多菌混接的玉米盆栽试验,测定了其对玉米的促生效应.[结果]从渭南、成阳、安康、商洛和榆林5地分离得到的158株菌中有17株茵具有上述多种植物促生作用的菌株.盆栽试验的测定结果表明:单独接种和多菌混合接种在玉米株高、根长、茎长、茎平均直径和干重方面与对照组相比较都有所增加,尤其是在多个指标上,多菌混合接种所显示出的促生效应均明显优于单菌接种.[结论]所筛选到的具有多种促生能力的菌株,可以为进一步构建植物根际促生菌(PGPR)菌群提供良好的种质资源.  相似文献   

9.
肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应   总被引:2,自引:0,他引:2  
【背景】中国盐碱地面积大、分布广、类型丰富,主要分布在东北、西北、华北及滨海地区,近年来的研究表明通过生物治理方式接种植物根际促生菌可提高植物对盐胁迫的抗性,从而加速盐碱地治理。【目的】初步揭示肠杆菌(Enterobacter sp.)FYP1101对盐胁迫下小麦幼苗的促生效应和机理,以期为该菌株的田间应用提供理论依据。【方法】基于涂布划线技术,以植酸磷培养基进行分离纯化,分别以Ashby培养基、无机磷培养基进行具有固氮、解无机磷能力细菌的初筛,之后对纯化所得细菌进行固氮、解植酸磷、解无机磷、产铁载体、产1-氨基环丙烷-1-羧酸(ACC)脱氨酶、产吲哚乙酸(IAA)能力的分析;基于16S r RNA基因序列对FYP1101做初步分类鉴定;设置3种处理(施加含FYP1101的颗粒菌肥,FP;施加不含菌的空载体颗粒,NK;颗粒菌肥和空载体颗粒都不施加的空白处理,CK),采用盆栽试验分析不同处理下的盐胁迫小麦生长性状及其根际土理化性质变化。【结果】共分离得到96株菌,其中一株编号为FYP1101的菌株耐盐性达8%,且具有较强的固氮能力[固氮酶活性为2.59 nmol C2H4/(h?mg蛋白)]、解植酸磷能力(2.70μg/m L)、解无机磷能力(4.29μg/m L)、产铁载体能力(D/d为2.88)、ACC脱氨酶活性[7.32μmolα-丁酮酸/(h·mg蛋白)]、产IAA能力(24.93 mg/L);基于16S r RNA基因序列,将FYP1101鉴定为Enterobacter属的菌株;FP相比NK和CK处理,显著提高了盐胁迫下小麦的叶绿素含量及地上和地下的生物量(提高约19%-54%),显著增加了根长(增幅约46%);根际土有机质和速效氮含量也显著提高,提高约52%-98%,根际土p H略降低(0.12和0.17),盐度升高约40%。【结论】Enterobacter sp.FYP1101具有多种植物促生特性,可显著影响盐胁迫下小麦幼苗根形态的建成,提高根际土营养、降低小麦对盐的吸收,促进小麦幼苗生长,在促进植物适应逆境胁迫方面具有良好的应用潜力。  相似文献   

10.
Two plant growth-promoting bacteria, Bacillus subtilis and Pseudomonas corrugata, immobilized in a sodium alginate based formulation were evaluated for their survival, viability and plant growth-promoting ability after 3 years of storage at 4 °C. Populations of both of the bacterial isolates recovered from the immobilized sodium alginate beads were in the order of 108 cfu g−1. The plant-based bioassay indicated that the plant growth promotion ability of both of the bacterial isolates was equal to those of fresh broth-based formulations. The bacterial isolates retained the root colonization, and antifungal and enzyme activities in the alginate-based formulation during storage.  相似文献   

11.
The presence of calcium-or iron-saturated illite had a positive effect on the conversion of ethanol and acetate by non-starved cultures of Desulfobacter postgatei D.A41, but had no effect on non-starved cultures of Desulfobulbus propionicus Lindhorst and Sesulfovibrio baculatus H.L21. Starvation of these cultures at room temperature induced adhesion of cells of D. baculatus H.L21 to the surface of the clay particles. No adhesion of cells of D. propionicus Lindhorst and D. postgatei D.A41 was ever observed. However, for the three strains studied, the presence of clay particles had a positive effect on conservation of the oxidative capacity of the cultures during starvation.  相似文献   

12.
Aims:  To assess the applicability of the 16S–23S rDNA internal spacer regions (ISR) as targets for PCR detection of Azospirillum ssp. and the phytostimulatory plant growth-promoting rhizobacteria seed inoculant Azospirillum lipoferum CRT1 in soil.
Methods and Results:  Primer sets were designed after sequence analysis of the ISR of A. lipoferum CRT1 and Azospirillum brasilense Sp245. The primers fAZO/rAZO targeting the Azospirillum genus successfully yielded PCR amplicons (400–550 bp) from Azospirillum strains but also from certain non- Azospirillum strains in vitro , therefore they were not appropriate to monitor indigenous Azospirillum soil populations. The primers fCRT1/rCRT1 targeting A. lipoferum CRT1 generated a single 249-bp PCR product but could also amplify other strains from the same species. However, with DNA extracts from the rhizosphere of field-grown maize, both fAZO/rAZO and fCRT1/rCRT1 primer sets could be used to evidence strain CRT1 in inoculated plants by nested PCR, after a first ISR amplification with universal ribosomal primers. In soil, a 7-log dynamic range of detection (102–108 CFU g−1 soil) was obtained.
Conclusions:  The PCR primers targeting 16S–23S rDNA ISR sequences enabled detection of the inoculant A. lipoferum CRT1 in field soil.
Significance and Impact of the Study:  Convenient methods to monitor Azospirillum phytostimulators in the soil are lacking. The PCR protocols designed based on ISR sequences will be useful for detection of the crop inoculant A. lipoferum CRT1 under field conditions.  相似文献   

13.
14.
【目的】以苎麻(Boehmeria nivea L. Gaud)根及根围土壤为研究材料,进行苎麻促生菌的筛选,并初步探索其促生作用机制。【方法】首先,以溶磷和解钾为基本筛选标准,初筛菌株在实验室条件下测定多项促生能力进行复筛;然后通过种子萌发、盆栽试验测定菌株对苎麻的促生效应,最后,通过形态观察、生理生化特性和16S rRNA基因序列同源性分析,对促生菌株进行分类学鉴定。【结果】从苎麻根和根围土壤中分离得到了13株菌同时具备溶磷和解钾能力,其中4株菌(RA-2、RAM-2、RAM-5和RAM-6)具备产铁载体、产IAA和产氨能力。种子萌发和盆栽试验的测定结果显示:4株菌株均能促进苎麻种子的萌发和植株的生长,其中菌株RA-2和RAM-5相比于对照处理能显著提高苎麻种子的萌发率、幼根长、株高和根系干重。分类鉴定结果显示菌株RA-2和RAM-5均属于伯克霍德菌属(Burkholderia)。【结论】从苎麻根围筛选到具有促生能力的菌株,为进一步开发研制苎麻专型促生菌剂或专型微生物有机肥提供资源。  相似文献   

15.
棉花根际亲和性高效促生细菌的分离筛选   总被引:3,自引:0,他引:3  
为了从棉花根际土壤筛选能与棉花凝集素具有亲和作用的高效促生细菌,以选择性培养基从棉花根部初步筛选具有固氮能力、解磷能力及解钾能力的促生细菌,再以异硫氰酸磺(FITC)标记的棉花凝集素为复筛工具,从棉花根际促生细菌中筛选能与棉花凝集素结合的亲和性菌株,分别挑选2株固氮菌、2株解磷细菌和2株解钾细菌作为微生物肥料接种到棉花根部进行盆栽试验.观察其在根部定殖情况.结果是在选择性平板上有20%~30%的菌株具有凝集素染色阳性.盆栽试验显示,接种的6株亲和性菌株能在棉花根部成功定殖,根际细菌数量约是灭活对照的`0倍.通过初步鉴定,固氮菌株N1111为固氮菌属(Azotobacter),N2121属于德克斯氏菌属(Derxia);解磷菌株P2126属于黄单胞菌属(Xanthomonas),P1108菌株为假单胞菌属(Pseudomonas);解钾菌株K2204和K2116属于芽孢杆菌属(Bacillus).  相似文献   

16.
During the growing season of 1986, the rhizobacteria (including organisms from the ectorhizosphere, the rhizoplane and endorhizosphere) of 20 different maize hybrids sampled from different locations in the Province of Quebec were inventoried by use of seven different selective media. Isolates were characterized by morphological and biochemical tests and identified using the API20E and API20B diagnostic strips.Pseudomonas spp. were the prominent bacteria found in the rhizoplane and in the ectorhizosphere.Bacillus spp. andSerratia spp. were also detected, but in smaller numbers. In the endorhizosphere,Bacillus spp. andPseudomonas spp. were detected in order of importance. Screening for plant growth-promoting rhizobacteria was carried out in three soils with different physical and chemical characteristics. The results depended on the soil used, but two isolates (Serratia liquefaciens andPseudomonas sp.) consistently caused a promotion of plant growth.Contribution no. 350 of the Research Station, Agriculture Canada, Sainte-Foy, Quebec.  相似文献   

17.
18.
The rhizosphere bacteriumAzospirillum brasilense Cd adsorbed strongly to light-textured and heavy-textured soils, but only slightly to quartz sand. Bacterial attachment to sand particles was mediated by a network made up of various sizes and shapes of fibrillar material. Inoculation of sand with an aggregate-deficient mutant resulted in no detectable fibrillar formation. Rinsing or agitating the sand, colonized by the wild-type and the mutant, had a greater effect on the mutant than on the parental strain. We propose that bacterial fibrils are essential for anchoring ofA. brasilense to sand. A. brasilense Cd was capable of efficiently colonizing the elongation and root-hair zones of tomato, pepper, cotton and soybean plants as well as of wheat plants. All inoculated plants demonstrated: (i) larger amounts of a mucigel-like substance on the root surface than non-inoculated plants, and (ii) fibrillar material which anchored the bacterial cells to the root surface. These fibrils established also connections between cells within bacterial aggregates. On non-water stressed soybean roots, mostA. brasilense Cd cells occurred as vibroid forms. Whereas, those on roots of water-stressed plants.(wilting) were cyst-like. A lower rhizosphere bacterial population was observed on water-stressed plants. When water stress conditions were eliminated, cells reverted to the vibroid form. A concomitant increase in the bacterial population was observed. We suggest that cyst-like formation is a natural response forA. brasilense Cd in the rhizosphere of water-stressed plants.  相似文献   

19.
Although plant growth-promoting rhizobacteria (PGPR) have been reported to influence plant growth, yield and nutrient uptake by an array of mechanisms, the specific traits by which PGPR promote plant growth, yield and nutrient uptake were limited to the expression of one or more of the traits expressed at a given environment of plant–microbe interaction. We selected nine different isolates of PGPR from a pool of 233 rhizobacterial isolates obtained from the peanut rhizosphere on the basis of ACC-deaminase activity. The nine isolates were selected, initially, on the basis of germinating seed bioassay in which the root length of the seedling was enhanced significantly over the untreated control. All the nine isolates were identified as Pseudomonas spp. Four of these isolates, viz. PGPR1, PGPR2, PGPR4 and PGPR7 (all fluorescent pseudomonads), were the best in producing siderophore and indole acetic acid (IAA). In addition to IAA and siderophore-producing attributes, Pseudomonas fluorescens PGPR1 also possessed the characters like tri-calcium phosphate solubilization, ammonification and inhibited Aspergillus niger and A. flavus in vitro. P. fluorescens PGPR2 differed from PGPR1 in the sense that it did not show ammonification. In addition to the traits exhibited by PGPR1, PGPR4 showed strong in vitro inhibition to Sclerotium rolfsii. The performances of these selected plant growth-promoting rhizobacterial isolates were repeatedly evaluated for 3 years in pot and field trials. Seed inoculation of these three isolates, viz. PGPR1, PGPR2 and PGPR4, resulted in a significantly higher pod yield than the control, in pots, during rainy and post-rainy seasons. The contents of nitrogen and phosphorus in soil, shoot and kernel were also enhanced significantly in treatments inoculated with these rhizobacterial isolates in pots during both the seasons. In the field trials, however, there was wide variation in the performance of the PGPR isolates in enhancing the growth and yield of peanut in different years. Plant growth-promoting fluorescent pseudomonad isolates, viz. PGPR1, PGPR2 and PGPR4, significantly enhanced pod yield (23–26%, 24–28% and 18–24%, respectively), haulm yield and nodule dry weight over the control in 3 years. Other attributes like root length, pod number, 100-kernel mass, shelling out-turn and nodule number were also enhanced. Seed bacterization with plant growth-promoting P. fluorescens isolates, viz. PGPR1, PGPR2 and PGPR4, suppressed the soil-borne fungal diseases like collar rot of peanut caused by A. niger and PGPR4 also suppressed stem rot caused by S. rolfsii. Studies on the growth patterns of PGPR isolates utilizing the seed leachate as the sole source of C and N indicated that PGPR4 isolate was the best in utilizing the seed leachate of peanut, cultivar JL24. Studies on the rhizosphere competence of the PGPR isolates, evaluated on the basis of spontaneous rifampicin resistance, indicated that PGPR7 was the best rhizoplane colonizer and PGPR1 was the best rhizosphere colonizer. Although the presence of growth-promoting traits in vitro does not guarantee that an isolate will be plant growth promoting in nature, results suggested that besides ACC-deaminase activity of the PGPR isolates, expression of one or more of the traits like suppression of phytopathogens, solubilization of tri-calcium phosphate, production of siderophore and/or nodulation promotion might have contributed to the enhancement of growth, yield and nutrient uptake of peanut.  相似文献   

20.
The applicability of transgenic plants and plant growth-promoting bacteria to improve plant biomass accumulation as a phytoremediation strategy at a nickel (Ni)-contaminated field site was examined. Two crops of 4-day old non-transformed and transgenic canola (Brassica napus) seedlings in the presence and absence of Pseudomonas putida strain UW4 (crop #1) or P. putida strain HS-2 (crop #1 and 2) were transplanted at a Ni-contaminated field site in 2005. Overall, transgenic canola had increased growth but decreased shoot Ni concentrations compared to non-transformed canola, resulting in similar total Ni per plant. Under optimal growth conditions (crop #2), the addition of P. putida HS-2 significantly enhanced growth for non-transformed canola. Canola with P. putida HS-2 had trends of higher total Ni per plant than canola without P. putida HS-2, indicating the potential usefulness of this bacterium in phytoremediation strategies. Modifications to the planting methods may be required to increase plant Ni uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号