共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
V. F. Semikhov L. P. Aref'eva S. Yu. Zolkin A. S. Timoshchenko O. A. Novozhilova D. S. Kostrikin 《Biology Bulletin》2004,31(1):21-35
The phylogenetic relationships of gymnospermous and angiospermous plants were studied. To this end, 13 antisera to seed proteins of plant taxa representing all the four classes of the gymnosperms were obtained. The antigens used in immunochemical reactions with these antisera included the proteins of 134 seed samples representing 91 families from all the 11 subclasses of dicotyledons and 64 seed samples representing 33 families from five out of six classes of monocotyledons (according to Takhtajan, 1996). Immunochemical analysis was performed by the methods of double immunodiffusion in agar gel (two variants) and immunoelectroblotting. In addition, some samples of seed proteins were analyzed for amino acid composition. The results corroborate the concept that the seed plants are a monophyletic taxon. The angiosperms apparently originated from a progymnospermous ancestor or branched from the main stem of gymnosperms prior to its division into the recent phyla. No common ancestor of all subclasses of the angiosperms has been identified. 相似文献
3.
4.
The Evolution of Avian Senescence Patterns: Implications for Understanding Primary Aging Processes 总被引:2,自引:0,他引:2
SYNOPSIS. The long life spans of birds relative to those ofmammals are intriguing to biogerontologists, particularly inlight of birds' high body temperatures, high blood glucose levels,and high metabolic ratesall of which should theoreticallyincrease their biochemical liability for rapid aging. The comparativelongevity of birds and other flying homeotherms is consistentwith evolutionary senescence theory, which posits that specieswith low mortality rates from predation or accident will bereleased from selection for rapid maturity and early reproduction,and will exhibit retarded aging. Comparative analyses of avianlife history parameters to date, although not as extensive asthose for mammals, broadly support an association between lowmortality rates, slow reproduction, and long lifespan. The diversityof bird life histories suggests the importance of developinga diversity of avian models for studies of aging mechanisms,both proximate and ultimate, and for using wild as well as domesticrepresentatives. Birds studied in the laboratory thus far showmany of the same manifestations of aging as mammals, includinghumans, and many ornithologists are beginning to document actuarialevidence consistent with aging in their study populations. Weencourage greater communication and collaboration among comparativegerontologists and ornithologists, in the hope that the studyof aging in birds will lead to an integrated understanding ofphysiological aging processes well grounded in an evolutionaryparadigm. 相似文献
5.
Gwenaël Piganeau Dominique Mouchiroud Laurent Duret Christian Gautier 《Journal of molecular evolution》2002,54(1):129-133
The relationship between the silent substitution rate (K s) and the GC content along the genome is a focal point of the debate about the origin of the isochore structure in vertebrates. Recent estimation of the silent substitution rate showed a positive correlation between K s and GC content, in contradiction with the predictions of both the regional mutation bias model and the selection or biased gene conversion model. The aim of this paper is to help resolve this contradiction between theoretical studies and data. We analyzed the relationship between K s and GC content under (1) uniform mutation bias, (2) a regional mutation bias, and (3) mutation bias and selection. We report that an increase in K s with GC content is expected under mutation bias because of either nonequilibrium of the isochore structure or an increasing mutation rate from AT toward GC nucleotides in GC-richer isochores. We show by simulations that CpG deamination tends to increase the mutation rate with GC content in a regional mutation bias model. We also demonstrate that the relationship between K s and GC under the selectionist or biased gene conversion model is positive under weak selection if the mutation selection equilibrium GC frequency is less than 0.5. Received: 28 March 2001 / Accepted: 16 May 2001 相似文献
6.
The GAF domain of phytochrome is essential for photoconversion and signal transduction. In gymnosperms, it exists in all members of the phytochrome family that experience gene duplication. Maximum-likelihood models of codon substitution can provide a framework for constructing likelihood ratio tests of changes in selective pressure and make clear predictions about patterns of genetic change following gene duplication. In this study, 68 gymnosperm GAF sequences were analyzed to identify lineages and sites under positive selection. Our results indicate that (1) positive selection at a few sites (3.6%), rather than relaxation of selective constraints, has played a major role in the evolution of the gymnosperm GAF domain; (2) strong positive selective pressure tends to occur in the recent PHYP lineages of cogeneric species, but is absent in old lineages consisting of distantly related species; and (3) the selective pressure indicated by the ω ratio varies greatly among lineages and sites in the GAF domain. 相似文献
7.
光敏色素是一类红光/远红光受体,在植物种子萌发到成熟的整个生长发育过程中均起重要的调节作用。光敏色素PHY-PAS1结构域存在于光敏色素基因家族的所有成员中,对调节发色团的光谱特性和光信号转导非常关键。光敏色素基因家族通过基因重复产生,而基因重复可能与物种形成有关。PHYP基因是裸子植物光敏色素基因家族发生第1次重复后产生的,并且以单拷贝形式存在。为了研究不同裸子植物PHYP基因编码蛋白的PHY-PAS1结构域在进化过程中是否受到相同的选择压力以及是否发生了适应性进化,该研究利用分支模型、位点模型以及分支.位点模型对裸子植物31条PHYP基因序列编码蛋白的PHY-PAS1结构域所受到的选择压力进行了分析。结果表明,在由PHY-PAS1结构域序列构建的系统树中,多数分支处于强烈的负选择压力下(ω〈1):有14个分支处于正选择压力下(ω〉1),其中13个分支发生在属内种间;与之相比,在较为古老的谱系中相对缺少这种正选择压力。 相似文献
8.
Christopher I. Keeling Harpreet K. Dullat Mack Yuen Steven G. Ralph Sharon Jancsik J?rg Bohlmann 《Plant physiology》2010,152(3):1197-1208
The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.Conifers (Coniferophyta) are well known for producing an abundant and diverse assortment of oleoresin diterpenoids, predominantly in the form of diterpene resin acids from specialized (or secondary) metabolism, that play roles in conifer defense (Trapp and Croteau, 2001a; Keeling and Bohlmann, 2006a; Bohlmann, 2008) and are an important source of biomaterials (Bohlmann and Keeling, 2008). Several conifer diterpene synthases (diTPSs) that biosynthesize these compounds have been functionally characterized (Stofer Vogel et al., 1996; Peters et al., 2000; Martin et al., 2004; Keeling and Bohlmann, 2006b; Ro and Bohlmann, 2006). The formation of diterpene resin acids of conifer specialized metabolism parallels the formation of ent-kaurenoic acid in the biosynthesis of the gibberellin diterpenoid phytohormones (Fig. 1; Keeling and Bohlmann, 2006a; Yamaguchi, 2008). In gibberellin biosynthesis, geranylgeranyl diphosphate (GGPP) is cyclized by diTPS activity to ent-copalyl diphosphate (ent-CPP), and the ent-CPP is further cyclized by diTPS activity to ent-kaurene. A cytochrome P450 (P450)-dependent monooxygenase (CYP701) oxidizes ent-kaurene to ent-kaurenoic acid (Davidson et al., 2006), paralleling the activity of a P450 (CYP720B1) that oxidizes abietadiene to abietic acid in conifer diterpene resin acid biosynthesis (Ro et al., 2005). Other P450s further functionalize ent-kaurenoic acid to form the biologically active gibberellins. Surprisingly, no conifer diTPS involved in the general (or primary) metabolism of gibberellins has been reported to date, while metabolite profiles of gibberellins have been well characterized in conifers for their role in flowering (Moritz et al., 1990).Open in a separate windowFigure 1.Comparison of the biosynthesis of gibberellins, as it is known in angiosperm and lower plants, with the biosynthesis of diterpene resin acids in conifers, a large group of gymnosperm trees. In conifers, the formation of diterpene resin acids involves bifunctional diTPS (e.g. abietadiene synthase) for the stepwise cyclization of GGPP into diterpenes such as abietadiene via a copalyl diphosphate intermediate that moves between the two active sites of the bifunctional diTPS (Peters et al., 2001). The products of the diTPS are subsequently oxidized by P450 to the resin acids. In contrast, gibberellin biosynthesis in angiosperms requires two monofunctional diTPSs to convert GGPP into ent-kaurene, which is subsequently modified by P450s. The two monofunctional diTPSs in angiosperm gibberellin biosynthesis are CPS and KS. In the lower plant P. patens, the CPS and KS activities are combined in a bifunctional diTPS similar to the bifunctional diTPS in conifer diterpene resin acid biosynthesis. Prior to this work, to our knowledge, it was not known if the formation of gibberellins in a gymnosperm involves two monofunctional diTPSs, as in angiosperms, or a bifunctional diTPS, as in gymnosperm diterpene resin acid biosynthesis and in P. patens gibberellin biosynthesis. (Figure adapted from Keeling and Bohlmann [2006a].)In the fungi Gibberella fujikuroi (Toyomasu et al., 2000) and Phaeosphaeria species L487 (Kawaide et al., 1997) and in the primitive land plant Physcomitrella patens (Bryophyta; Hayashi et al., 2006; Anterola and Shanle, 2008), the formation of ent-kaurene from GGPP is catalyzed by bifunctional diTPS enzymes. These enzymes contain two active sites. The N-terminal active site domain harbors a conserved DXDD motif and catalyzes the protonation-initiated cyclization of GGPP to ent-CPP (Prisic et al., 2007). In the C-terminal active site domain, a conserved DDXXD motif is essential for the diphosphate ionization-initiated cyclization of ent-CPP to ent-kaurene (Christianson, 2006). The presence of two active sites with their characteristic DXDD and DDXXD motifs resembles the structure of conifer bifunctional diTPSs in specialized metabolism of diterpene resin acid biosynthesis (Fig. 1), such as the grand fir (Abies grandis) abietadiene synthase (AgAS) and Norway spruce (Picea abies) levopimaradiene/abietadiene synthases (PaLAS; Peters et al., 2001; Martin et al., 2004; Keeling and Bohlmann, 2006a). In contrast, the formation of ent-kaurene from GGPP in angiosperms is catalyzed by two separate monofunctional enzymes, one with only the DXDD motif and having ent-copalyl diphosphate synthase (ent-CPS) activity and the other with only the DDXXD motif and having ent-kaurene synthase (ent-KS) activity (Yamaguchi, 2008).A previously published model for the evolution of plant diTPS (Trapp and Croteau, 2001b) suggests that genes encoding the monofunctional CPS and KS enzymes known in angiosperms originated by gene duplication and subfunctionalization (Lynch and Force, 2000) of an ancestral bifunctional CPS/KS gene that may have been similar to the gene for the CPS/KS enzyme of the moss P. patens. The same model also suggests that genes for diTPSs of gymnosperm specialized diterpene resin acid metabolism arose from duplication and subsequent neofunctionalization of an ancestral bifunctional diTPS of the gibberellin pathway (Trapp and Croteau, 2001b). The pathways to specialized oleoresin diterpenes existed in ancient plants prior to the differentiation of gymnosperms and angiosperms (Bray and Anderson, 2009). Vascular plants split from nonvascular plants approximately 500 million years ago, and angiosperms split from gymnosperms approximately 300 million years ago (Palmer et al., 2004). As there has been no report to date of genes involved in gibberellin biosynthesis in gymnosperms, it remains unresolved and cannot be predicted whether conifers have a bifunctional CPS/KS for the formation of ent-kaurene similar to the primitive land plant P. patens and paralleling the diTPSs for conifer specialized diterpene resin acid biosynthesis or whether they have separate monofunctional CPS and KS enzymes, as is the case in angiosperms.In this study, we made use of the extensive EST resources for spruce species (Pavy et al., 2005; Ralph et al., 2008), combined with isolation and sequencing of full-length cDNAs, genomic (g)DNA, and targeted bacterial artificial chromosome (BAC) clones, as well as enzyme assays with recombinant proteins to search for, and functionally characterize, possible monofunctional or bifunctional diTPS for ent-kaurene biosynthesis in a gymnosperm. In summary, we successfully isolated and characterized monofunctional ent-CPS (PgCPS) and ent-KS (PgKS) from white spruce (Picea glauca) and isolated orthologous cDNAs from Sitka spruce (Picea sitchensis). Comparison of enzyme functions and gene structures support common ancestry but different routes of evolution of monofunctional and bifunctional diTPS in conifer general and specialized metabolism, respectively. 相似文献
9.
10.
Tobias Warnecke Erin A. Becker Marc T. Facciotti Corey Nislow Ben Lehner 《PLoS computational biology》2013,9(11)
Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change. 相似文献
11.
Zhiyun Gong Yufeng Wu Andrea Koblí?ková Giovana A. Torres Kai Wang Marina Iovene Pavel Neumann Wenli Zhang Petr Novák C. Robin Buell Ji?í Macas Jiming Jiang 《The Plant cell》2012,24(9):3559-3574
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains. 相似文献
12.
John R. Wallace Matthew C. Gordon Lindsey Hartsell Lydia Mosi M. Eric Benbow Richard W. Merritt Pamela L. C. Small 《Applied and environmental microbiology》2010,76(18):6215-6222
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe necrotizing skin disease that causes significant morbidity in Africa and Australia. Person-to-person transmission of Buruli ulcer is rare. Throughout Africa and Australia infection is associated with residence near slow-moving or stagnant water bodies. Although M. ulcerans DNA has been detected in over 30 taxa of invertebrates, fish, water filtrate, and plant materials and one environmental isolate cultured from a water strider (Gerridae), the invertebrate taxa identified are not adapted to feed on humans, and the mode of transmission for Buruli ulcer remains an enigma. Recent epidemiological reports from Australia describing the presence of M. ulcerans DNA in adult mosquitoes have led to the hypothesis that mosquitoes play an important role in the transmission of M. ulcerans. In this study we have investigated the potential of mosquitoes to serve as biological or mechanical vectors or as environmental reservoirs for M. ulcerans. Here we show that Aedes aegypti, A. albopictus, Ochlerotatus triseriatus, and Culex restuans larvae readily ingest wild-type M. ulcerans, isogenic toxin-negative mutants, and Mycobacterium marinum isolates and remain infected throughout larval development. However, the infections are not carried over into the pupae or adult mosquitoes, suggesting an unlikely role for mosquitoes as biological vectors. By following M. ulcerans through a food chain consisting of primary (mosquito larvae), secondary (predatory mosquito larva from Toxorhynchites rutilus septentrionalis), and tertiary (Belostoma species) consumers, we have shown that M. ulcerans can be productively maintained in an aquatic food web.Infection with Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is associated with residence near stagnant and slow-moving water bodies in areas in which the disease is endemic (5, 36, 40, 45, 50). A plasmid-encoded macrolide toxin, mycolactone, is the primary virulence determinant of M. ulcerans (8, 41). Biting aquatic insects, such as several taxa in the Belostomatidae and Naucoridae families (Hemiptera), have been suggested as possible vectors of M. ulcerans in several laboratory experiments (16, 19, 20, 24, 31, 32); however, there is little empirical evidence from field studies to support the contention that these biting insects vector M. ulcerans to humans (2). In Melbourne, Australia, recent epidemiological evidence suggests that mosquitoes may serve as vectors in the transmission of BU disease (10, 11, 12, 34, 35). In this study, 957 pools consisting of over 11,000 mosquitoes of four different species were collected and tested by quantitative PCR (qPCR) for the presence of M. ulcerans DNA, and positive results were obtained from 48 of 957 pools tested (10). Of the 48 positive pools, 13 were positive for PCR directed against two insertion sequences (IS2404 and IS2606) as well as against sequence based on the ketoreductase domain of the mycolactone toxin genes. Because all of these target sequences are present multiple times in the genome, it was difficult to assign genome equivalents to these results. However, data from laboratory experiments suggested that 10 to 100 M. ulcerans isolates per mosquito were present in the positive pools. Epidemiological work also suggested a seasonal relationship between Buruli ulcer and mosquito-vectored diseases in Australia (12). These studies are extremely provocative and raise a number of questions for further work. What is the prevalence of M. ulcerans in other invertebrate taxa in the same environment? What is the infection rate in equal numbers of mosquitoes collected from areas in which the disease is not endemic? Is it possible to obtain physical evidence for the presence of M. ulcerans through microscopy or culture of mosquitoes in areas in which the disease is endemic, and, finally, what can we learn from laboratory studies concerning the interaction between mosquitoes and M. ulcerans?The recent work from Australia suggesting that M. ulcerans is spread by mosquitoes is particularly significant because adult mosquitoes are the most important group of insects in the spread of human disease. They may serve as biological vectors that provide a major environment for pathogen replication, as in malaria or yellow fever, or as mechanical vectors that carry organisms between hosts without serving as a site of replication (1, 4, 7, 9, 38). Larval mosquitoes are common in habitats associated with BU disease, most notably lentic or standing water habitats, and feed by filtering particles in the water using labral head fans (21). Members of some genera (i.e., Anopheles) aggregate at the air-water interface in microlayers near plant stems and algal mats (27, 28, 46), where they feed on microorganisms such as bacteria and algae (47). Because of their collecting-filtering feeding mode, there is potential for larvae to consume M. ulcerans and concentrate mycobacteria through their feeding activities (22, 23).In Ghana, the occurrence of M. ulcerans among invertebrate communities in lentic habitats has been documented from regions in Ga West and Ga East Districts in which the disease is endemic as well as those in which it is not endemic (2, 49) but not in geographically distinct areas in which the disease is not endemic such as the Volta region (49). M. ulcerans has been identified in a suite of environmental samples such as filtered water, biofilms, and algae as well as among a broad spectrum of invertebrate taxa, including both larval and adult mosquitoes (2, 11, 17, 49). However, the replication and trophic movement of M. ulcerans within these environmental samples and invertebrate communities have not been experimentally investigated. Conceptual models have been proposed that assume that the primary consumers of M. ulcerans (e.g., mosquito larvae, cladocerans, and chironomid larvae) may feed on bacteria and algae in biofilms, filter suspended matter from the water column, and then initiate the passage of M. ulcerans through an aquatic food web (2, 22, 31). This model predicts the movement of M. ulcerans through secondary and tertiary consumers and implies a complex trophic relationship in the ecology of M. ulcerans as well as an important role of aquatic invertebrates in the disease ecology of M. ulcerans.In the studies reported here, we have explored the role of mosquitoes as biological or mechanical vectors of M. ulcerans, as well as the potential of mosquito larvae to play a central role in the movement of M. ulcerans through an aquatic food web. In order to investigate the ability of mosquito larvae to ingest and maintain M. ulcerans within their digestive tract as well as to persist throughout the mosquito development cycle, we took advantage of the fact that mosquito larvae naturally feed upon bacteria. Results presented here show that strains of M. ulcerans from Africa and Australia, as well as Mycobacterium marinum, were maintained at high levels in the larval mosquito gut for 6 days. However, neither M. ulcerans nor M. marinum was detected in adult mosquitoes that were infected in the larval stage. These results suggest that mosquitoes are unlikely to serve as biological vectors of M. ulcerans.We further developed a model for following the passage of M. ulcerans through a series of consumers to determine whether M. ulcerans could be passed up a trophic chain from primary to tertiary consumers. In this model, we conducted similar experiments using four species of nonpredatory mosquito larvae, Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), Ochlerotatus triseriatus (Theobald), and Culex restuans (Theobald), as primary consumers. These larvae were infected with isogenic wild-type (WT) and toxin-negative isolates of M. ulcerans and of M. marinum, the closest relative to M. ulcerans (13, 14, 51). We have shown that M. ulcerans in mosquito larvae survive passage through secondary and tertiary consumers, thus providing the first laboratory evidence that M. ulcerans has the potential to move between and be maintained within different species in an aquatic food web. 相似文献
13.
Iron-Melanin Interaction and Lipid Peroxidation: Implications for Parkinson's Disease 总被引:2,自引:9,他引:2
The vulnerability of substantia nigral (SN) melaninized dopamine neurons to neurodegeneration in Parkinson's disease and the selective increases of iron and basal lipid peroxidation in SN indicate that iron-melanin interaction could be crucial to the pathogenesis of this disease. The present study describes, for the first time, the identification and characterization of a high-affinity (KD = 13 nM) and a lower affinity (KD = 200 nM) binding site for iron on dopamine melanin. The binding of iron to melanin is dependent on pH and the concentration of melanin. Iron chelators, U74500A, desferrioxamine, and to less extent 1,10-phenanthroline and chlorpromazine, but not the Parkinson-inducing neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, can inhibit the binding of iron to melanin and iron-induced lipid peroxidation. Although melanin alone diminishes basal lipid peroxidation in rat cortical homogenates, it can also potentiate that initiated by iron, a reaction inhibited by desferrioxamine. In the absence of an identifiable exogenous or endogenous neurotoxin in idiopathic Parkinson's disease, iron-melanin interaction in pars compacta of SN may be a strong candidate for the cytotoxic component of oxygen radical-induced neurodegeneration of melaninized dopamine neurons. 相似文献
14.
Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture. 相似文献
15.
Ultrastructural and Cytochemical Studies on Cellulose, Xylan and Pectin Degradation in Wheat Spikes Infected by Fusarium culmorum 总被引:2,自引:0,他引:2
The cell wall components cellulose, xylan and pectin in different tissues of noninoculated healthy and Fusarium culmorum (W. G. Smith) Sacc-infected wheat spikes were localized by means of enzyme-gold and immuno-gold labelling techniques. The cell walls in the ovary, lemma and rachis of the healthy wheat spike showed labellings in different patterns and densities with cellulase-gold and xylanase-gold probes, as well as with the antipectin monoclonal antibody JIM7. The inter- and intracellular growth of the pathogen in the ovary, lemma and rachis of the infected wheat spike, not only caused pronounced alterations of cell walls and middle lamella matrices, but also led to marked modifications of cell wall components. The enzyme-gold and immuno-gold labellings in the infected host tissues revealed that the labelling densities for cellulose, xylan and pectin were significantly reduced in the cell walls of infected ovary, lemma and rachis as compared with corresponding healthy host tissues. The host cell walls in contact with or close to hyphae of the pathogen showed more marked morphological changes and much greater reduction of the labelling density than those in distance from the hyphae. These results provide evidence that F. culmorum may produce cell-wall-degrading enzymes such as cellulases, xylanases and pectinases during infection and colonization of wheat spikes tissues. Furthermore, at the early stage of infection (e.g. 3 days after inoculation), the degradation of pectin was greater than that of cellulose and xylan in the cell walls of the same infected host tissues, indirectly suggesting that the pectinases may be secreted earlier or exert higher activities than cellulases and xylanases. 相似文献
16.
Island biotas provide a great opportunity to study not only the phylogeographic patterns of a group of species, but also to explore the differentiation in their coevolutionary interactions. Drosophila and their parasitoids are exemplary systems for studying complex interaction patterns. However, there is a lack of studies combining interaction-based and molecular marker-based methods. We applied an integrated approach combining phylogeography, interaction, and host-choice behavior studies, with the aim to understand how coevolutionary interactions evolve in Drosophila-parasitoid island populations. The study focused on the three most abundant Drosophila species in Ryukyu archipelago and Taiwan: D. albomicans, D. bipectinata, and D. takahashii, and the Drosophila-parasitoid Leptopilina ryukyuensis. We determined mitochondrial COI haplotypes for samples representing five island populations of Drosophila and four island populations of L. ryukyuensis. We additionally sequenced parts of the autosomal Gpdh for Drosophila samples, and the ITS2 for parasitoid samples. Phylogenetic and coalescent analyses were used to test for demographic events and to place them in a temporal framework. Geographical differences in Drosophila-parasitoid interactions were studied in host-acceptance, host-suitability, and host-choice experiments. All four species showed species-specific phylogeographic patterns. A general trend of the haplotype diversity increasing towards the south was observed. D. albomicans showed very high COI haplotype diversity, and had the most phylogeographically structured populations, with differentiation into the northern and the southern population-group, divided by the Kerama gap. Differentiation in host suitability was observed only between highly structured populations of D. albomicans, possibly facilitated by restricted gene flow. Differentiation in host-acceptance in D. takahashii, and host-acceptance and host-choice in L. ryukyuensis was found, despite there being no differentiation in these two species according to molecular markers. Host choice assays show that L. ryukyuensis populations that have had more time to coevolve adapt their behavior to exploit the most suitable host – D. albomicans. L. ryukyuensis parasitoids on border ranges may, on the other hand, benefit from broader host-acceptance, that may facilitate adaptation to uncertain and variable environments. All results indicate that Drosophila-parasitoid populations in the Ryukyu archipelago and Taiwan have different evolutionary trajectories, and coevolve in a dynamic, complex, and local-specific way. 相似文献
17.
Characters in animals used in signalling and subjected to strong directional selection often demonstrate (i) an elevated level of fluctuating asymmetry (small random deviations from bilateral symmetry) and (ii) a negative relationship between the degree of individual fluctuating asymmetry and the size of a given character. We tested these two predictions in plants since flowers are subjected to strong directional selection and are involved in signalling to pollinators, whereas leaves are supposed not to be directly involved in signalling. The overall level of fluctuating asymmetry in a number of plant species with bilaterally or radially symmetric flowers was not generally higher in floral traits than in leaves. The level of fluctuating asymmetry in plants was sometimes significantly consistent within individuals. The absolute degree of individual fluctuating asymmetry in floral traits was generally negatively related to the size of the trait, while there was a positive relationship for leaves. The degree of individual fluctuating asymmetry in floral traits was marginally negatively related to the degree of individual fluctuating asymmetry in leaf traits. These patterns of fluctuating asymmetry in plants suggest that (i) the degree of asymmetry in flowers signals different aspects of quality than does the degree of asymmetry in leaves, and that (ii) fluctuating asymmetry in flowers often reflects the phenotypic quality of individual plants. 相似文献
18.
Darwinian models of cultural change have been motivated, in part, by the desire to provide a framework for the unification of the biological and the human sciences. In this paper, drawing upon a distinction between the evolution of enabling mechanisms for the acquisition and dissemination of knowledge (EEM) and the evolution of epistemic theses as cultural products (EET), we propose a model of how culture emerges as a product of biological evolution on the basis of the concept of reaction norms. The goal of this model is to provide a means for conceptualizing how the biological and the cultural realms are connected, when they start to disconnect, and what the key transitions are. We then assess the viability of a Darwinian approach to cultural change. We conclude that the prospects of producing a Darwinian model of cultural change that unifies the human sciences in a way that mirrors the unification of the biological sciences in the light of Darwin’s theory are rather dim. 相似文献
19.
Natalia Rybczynski 《Journal of Mammalian Evolution》2007,14(1):1-35
Beavers (Castoridae) are semiaquatic rodents that modify forest and aquatic habitats by exploiting trees as a source of food and building material. The capacity of beavers to transform habitats has attracted interest from a variety of researchers, including ecologists, geomorphologists and evolutionary biologists. This study uses morphological and behavioral evidence from the fossil record to investigate the evolutionary history of tree-exploitation and swimming in beavers. The findings suggest that both behaviors appeared within a single castorid lineage by the beginning of the Miocene, roughly 24 million years ago. Biogeographic results support the hypothesis that tree-exploitation evolved at high latitudes, possibly influenced by the development of hard winters. 相似文献
20.
The Extracellular Xylan Degradative System in Clostridium cellulolyticum Cultivated on Xylan: Evidence for Cell-Free Cellulosome Production
下载免费PDF全文

O. Mohand-Oussaid S. Payot E. Guedon E. Gelhaye A. Youyou H. Petitdemange 《Journal of bacteriology》1999,181(13):4035-4040
In this study, we demonstrate that the cellulosome of Clostridium cellulolyticum grown on xylan is not associated with the bacterial cell. Indeed, the large majority of the activity (about 90%) is localized in the cell-free fraction when the bacterium is grown on xylan. Furthermore, about 70% of the detected xylanase activity is associated with cell-free high-molecular-weight complexes containing avicelase activity and the cellulosomal scaffolding protein CipC. The same repartition is observed with carboxymethyl cellulase activity. The cellulose adhesion of xylan-grown cells is sharply reduced in comparison with cellulose-grown cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan- and cellulose-grown cells have different compositions. In both cases, the scaffolding protein CipC is present, but the relative proportions of the other components is dramatically changed depending on the growth substrate. We propose that, depending on the growth substrate, C. cellulolyticum is able to regulate the cell association and cellulose adhesion of cellulosomes and regulate cellulosomal composition. 相似文献