首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613–694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region 2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613–694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation.  相似文献   

2.
Using molecular dynamics simulations, we describe how crowded environments affect the internal dynamics and diffusion of the hepatitis C virus proteases NS3/4A. This protease plays a key role in viral replication and is successfully used as a target for antiviral treatment. The NS3 enzyme requires a peptide cofactor, called NS4A, with its central part interacting with the NS3 β-sheet, and flexible, protruding terminal tails that are unstructured in water solution. The simulations describe the enzyme and water molecules at atomistic resolution, whereas crowders are modeled via either all-atom or coarse-grained models to emphasize different aspects of crowding. Crowders reflect the polyethylene glycol (PEG) molecules used in the experiments to mimic the crowded surrounding. A bead-shell model of folded coarse-grained PEG molecules considers mainly the excluded volume effect, whereas all-atom PEG models afford more protein-like crowder interactions. Circular dichroism spectroscopy experiments of the NS4A N-terminal tail show that a helical structure is formed in the presence of PEG crowders. The simulations suggest that crowding may assist in the formation of an NS4A helical fragment, positioned exactly where a transmembrane helix would fold upon the NS4A contact with the membrane. In addition, partially interactive PEGs help the NS4A N-tail to detach from the protease surface, thus enabling the process of helix insertion and potentially helping the virus establish a replication machinery needed to produce new viruses. Results point to an active role of crowding in assisting structural changes in disordered protein fragments that are necessary for their biological function.  相似文献   

3.
Conformational malleability allows intrinsically disordered proteins (IDPs) to respond agilely to their environments, such as nonspecifically interacting with in vivo bystander macromolecules (or crowders). Previous studies have emphasized conformational compaction of IDPs due to steric repulsion by macromolecular crowders, but effects of soft attraction are largely unexplored. Here we studied the conformational ensembles of the IDP FlgM in both polymer and protein crowders by small-angle neutron scattering. As crowder concentrations increased, the mean radius of gyration of FlgM first decreased but then exhibited an uptick. Ensemble optimization modeling indicated that FlgM conformations under protein crowding segregated into two distinct populations, one compacted and one extended. Coarse-grained simulations showed that compacted conformers fit into an interstitial void and occasionally bind to a surrounding crowder, whereas extended conformers snake through interstitial crevices and bind multiple crowders simultaneously. Crowder-induced conformational segregation may facilitate various cellular functions of IDPs.  相似文献   

4.
Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with 2H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.  相似文献   

5.
6.
Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation.  相似文献   

7.
Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with 2H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.  相似文献   

8.
Recent experimental studies of protein folding and binding under crowded solutions suggest that crowding agents exert subtle influences on the thermodynamic and kinetic properties of the proteins. While some of the crowding effects can be understood qualitatively from simple models of the proteins, quantitative rationalization of these effects requires an atomistic representation of the protein molecules in modeling their interactions with crowders. A computational approach, known as postprocessing, has opened the door for atomistic modeling of crowding effects. This review summarizes the applications of the postprocessing approach for studying crowding effects on the thermodynamics and kinetics of protein folding, conformational transition, and binding. The integration of atomistic modeling with experiments in crowded solutions promises new insight into biochemical processes in cellular environments.  相似文献   

9.
The intracellular environment contains high concentrations of macromolecules occupying up to 30% of the total cellular volume. Presence of these macromolecules decreases the effective volume available for the proteins in the cell and thus increases the effective protein concentrations and stabilizes the compact protein conformations. Macromolecular crowding created by various macromolecules such as proteins, nucleic acids, and carbohydrates has been shown to have a significant effect on a variety of cellular processes including protein aggregation. Most studies of macromolecular crowding have used neutral, flexible polysaccharides that function primarily via excluded volume effect as model crowding agents. Here we have examined the effects of more rigid polysaccharides on protein structure and aggregation. Our results indicate that rigid and flexible polysaccharides influence protein aggregation via different mechanisms and suggest that, in addition to excluded volume effect, changes in solution viscosity and non-specific protein–polymer interactions influence the structure and dynamics of proteins in crowded environments.  相似文献   

10.
Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of “test” proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI), adenylate kinase (AdK), orotidine phosphate decarboxylase (ODCase), Trp repressor (TrpR), hemoglobin, DNA β-glucosyltransferase, and Ap4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 Å radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20–44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration). Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues) and TrpR (98 residues)]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will serve as valuable guides for expected crowding effects on protein conformation changes inside cells.  相似文献   

11.
12.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

13.
BackgroundThe environment inside cells in which proteins fold and function are quite different from that of the dilute buffer solutions often used during in vitro experiments. The presence of large amounts of macromolecules of varying shapes, sizes and compositions makes the intracellular milieu extremely crowded.Scope of reviewThe overall concentration of macromolecules ranges from 50 to 400 g l 1, and they occupy 10–40% of the total cellular volume. These differences in solvent conditions and the level of crowdedness resulting in excluded volume effects can have significant consequences on proteins' biophysical properties. A question that arises is: how important is it to examine the roles of shape, size and composition of macromolecular crowders in altering the biological properties of proteins? This review article aims at focusing, gathering and summarizing all of the research investigations done by means of in vitro and in silico approaches taking into account the size-dependent influence of the crowders on proteins' properties.Major conclusionsAltogether, the internal architecture of macromolecular crowding environment including size, shape and concentration of crowders, appears to be playing an extremely important role in causing changes in the biological processes. Most often the small sized crowders have been found more effective crowding agents. However, thermodynamic stability, structure and functional activity of proteins have been governed by volume exclusion as well as soft (chemical) interactions.General significanceThe article provides an understanding of importance of internal architecture of the cellular environment in altering the biophysical properties of proteins.  相似文献   

14.
The natively disordered protein alpha-synuclein is the primary component of Lewy bodies, the cellular hallmark of Parkinson's disease. Most studies of this protein are performed in dilute solution, but its biologically relevant role is performed in the crowded environment inside cells. We addressed the effects of macromolecular crowding on alpha-synuclein by combining NMR data acquired in living Escherichia coli with in vitro NMR data. The crowded environment in the E.coli periplasm prevents a conformational change that is detected at 35 degrees C in dilute solution. This change is associated with an increase in hydrodynamic radius and the formation of secondary structure in the N-terminal 100 amino acid residues. By preventing this temperature-induced conformational change, crowding in the E.coli periplasm stabilizes the disordered monomer. We obtain the same stabilization in vitro upon crowding alpha-synuclein with 300 g/l of bovine serum albumin, indicating that crowding alone is sufficient to stabilize the disordered, monomeric protein. Two disease-associated variants (A30P and A53T) behave in the same way in both dilute solution and in the E.coli periplasm. These data reveal the importance of approaching the effects of macromolecular crowding on a case-by-case basis. Additionally, our work shows that discrete structured protein conformations may not be achieved by alpha-synuclein inside cells, implicating the commonly overlooked aspect of macromolecular crowding as a possible factor in the etiology of Parkinson's disease.  相似文献   

15.
Theoretical models predict that macromolecular crowding can increase protein folding stability, but depending on details of the models (e.g., how the denatured state is represented), the level of stabilization predicted can be very different. In this study, we represented the native and denatured states atomistically, with conformations sampled from explicit-solvent molecular dynamics simulations at room temperature and high temperature, respectively. We then designed an efficient algorithm to calculate the allowed fraction, f, when the protein molecule is placed inside a box of crowders. That a fraction of placements of the protein molecule is disallowed because of volume exclusion by the crowders leads to an increase in chemical potential, given by Δμ = −kBT lnf. The difference in Δμ between the native and denatured states predicts the effect of crowding on the folding free energy. Even when the crowders occupied 35% of the solution volume, the stabilization reached only 1.5 kcal/mol for cytochrome b562. The modest stabilization predicted is consistent with experimental studies. Interestingly, a mixture of different sized crowders was found to exert a greater effect than the sum of the individual species of crowders. The stabilization of crowding on the binding stability of barnase and barstar, based on atomistic modeling of the proteins, was similarly modest. These findings have profound implications for macromolecular crowding inside cells.  相似文献   

16.
The protein folding problem was apparently solved recently by the advent of a deep learning method for protein structure prediction called AlphaFold. However, this program is not able to make predictions about the protein folding pathways. Moreover, it only treats about half of the human proteome, as the remaining proteins are intrinsically disordered or contain disordered regions. By definition these proteins differ from natively folded proteins and do not adopt a properly folded structure in solution. However these intrinsically disordered proteins (IDPs) also systematically differ in amino acid composition and uniquely often become folded upon binding to an interaction partner. These factors preclude solving IDP structures by current machine-learning methods like AlphaFold, which also cannot solve the protein aggregation problem, since this meta-folding process can give rise to different aggregate sizes and structures. An alternative computational method is provided by molecular dynamics simulations that already successfully explored the energy landscapes of IDP conformational switching and protein aggregation in multiple cases. These energy landscapes are very different from those of ‘simple’ protein folding, where one energy funnel leads to a unique protein structure. Instead, the energy landscapes of IDP conformational switching and protein aggregation feature a number of minima for different competing low-energy structures. In this review, I discuss the characteristics of these multifunneled energy landscapes in detail, illustrated by molecular dynamics simulations that elucidated the underlying conformational transitions and aggregation processes.  相似文献   

17.
《Biophysical journal》2023,122(2):397-407
The crowdedness of the cell calls for adequate intracellular organization. Biomolecular condensates, formed by liquid-liquid phase separation of intrinsically disordered proteins and nucleic acids, are important organizers of cellular fluids. To underpin the molecular mechanisms of protein condensation, cell-free studies are often used where the role of crowding is not investigated in detail. Here, we investigate the effects of macromolecular crowding on the formation and material properties of a model heterotypic biomolecular condensate, consisting of nucleophosmin (NPM1) and ribosomal RNA (rRNA). We studied the effect of the macromolecular crowding agent poly(ethylene glycol) (PEG), which is often considered an inert crowding agent. We observed that PEG could induce both homotypic and heterotypic phase separation of NPM1 and NPM1-rRNA, respectively. Crowding increases the condensed concentration of NPM1 and decreases its equilibrium dilute phase concentration, although no significant change in the concentration of rRNA in the dilute phase was observed. Interestingly, the crowder itself is concentrated in the condensates, suggesting that co-condensation rather than excluded volume interactions underlie the enhanced phase separation by PEG. Fluorescence recovery after photobleaching measurements indicated that both NPM1 and rRNA become immobile at high PEG concentrations, indicative of a liquid-to-gel transition. Together, these results provide more insight into the role of synthetic crowding agents in phase separation and demonstrate that condensate properties determined in vitro depend strongly on the addition of crowding agents.  相似文献   

18.
In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca2+, leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca2+ and target proteins.  相似文献   

19.
In cells, proteins execute specific tasks in crowded environments; these environments influence their stability and dynamics. Similarly, for an enzyme molecule encapsulated in an inorganic cavity as in biosensors or biocatalysts, confinement or excluded volume plays an important role in its stability and dynamics. In this article we present results of our experimental and theoretical investigations of the confinement and macromolecular crowding effects on protein. On the experimental side we study the stability of encapsulated cytochrome c against unfolding induced by the presence of denaturants, such as urea. Results show that, as the pore size in which protein is trapped is reduced, protein shows higher stability against denaturant-induced unfolding. On the theoretical side, after reviewing our previous study of the confinement effects on the equilibrium and dynamic properties of protein using a minimalist (two-dimensional lattice, Monte Carlo, Brownian dynamics) model, we have extended the model so that the effects of macromolecular crowding on such properties can be studied. Our simulations show that both folding and unfolding times increase with the number of crowders in solution, however, the equilibrium constant is affected such that the equilibrium is shifted towards the folded state. Furthermore, our results show that, for a fixed number of crowders as the size of crowder (or excluded volume) increases, the average size of protein at equilibrium decreases.  相似文献   

20.
Globular proteins composed of different secondary structures and fold types were examined by synchrotron radiation circular dichroism spectroscopy to determine the effects of dehydration on their secondary structures. They exhibited only minor changes upon removal of bulk water during film formation, contrary to previously reported studies of proteins dehydrated by lyophilization (where substantial loss of helical structure and gain in sheet structure was detected). This near lack of conformational change observed for globular proteins contrasts with intrinsically disordered proteins (IDPs) dried in the same manner: the IDPs, which have almost completely unordered structures in solution, exhibited increased amounts of regular (mostly helical) secondary structures when dehydrated, suggesting formation of new intra‐protein hydrogen bonds replacing solvent‐protein hydrogen bonds, in a process which may mimic interactions that occur when IDPs bind to partner molecules. This study has thus shown that the secondary structures of globular and intrinsically disordered proteins behave very differently upon dehydration, and that films are a potentially useful format for examining dehydrated soluble proteins and assessing IDPs structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号