首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

2.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

3.
Abstract: We have characterized the structural properties of heparan sulfates from brain and other tissues after de-polymerization with a mixture of three heparin and heparan sulfate lyases from Flavobacterium heparinum. The resulting disaccharides were separated by HPLC and identified by comparison with authentic standards. In rat, rabbit, and bovine brain, 46–69% of the heparan sulfate disaccharides are N-acetylated and unsulfated, and 17–21% contain a single sulfate residue in the form of a sulfoamino group. In rabbit, bovine, and 1-day postnatal rat brain, disaccharides containing both a sulfated uronic acid and N-sulfate account for an additional 10–14%, together with smaller and approximately equall proportions (5–9%) of mono-, di-, and trisulfated disaccharides having sulfate at the 6-position of the glucosamine residue. Kidney and lung heparan sulfates are distinguished by high concentrations of disaccharides containing 6-sulfated N-acetylglucosamine residues. In chromaffin granules, the catecholamine-and peptide-storing organelles of adrenal medulla, where heparan sulfate accounts for a minor portion (5–10%) of the glycosaminoglycans, we have determined that bovine chromaffin granule membranes contain heparan sulfate in which almost all of the disaccharides are either unsulfated (71 %) or monosulfated (18%). In sympathetic nerves, norepinephrine is stored in large densecored vesicles that in biochemical composition and properties closely resemble adrenal chromaffin granules. However, in contrast to chromaffin granules, heparan sulfate accounts for ~ 75% of the total glycosaminoglycans in large dense-cored vesicles and more closely resembles heparin, insofar as it contains only 21 % unsulfated disaccharides, 10% mono-and disulfated disaccharides, and 69% trisulfated disaccharides. Our results therefore reveal significant differences among heparan sulfates from different sources, supporting other evidence that structural variations in heparan sulfate may be related to specific biological functions, such as the switching in the neural response from fibroblast growth factor-2 to fibro-blast growth factor-1 resulting from developmental changes in the glycosaminoglycan chains of a heparan sulfate proteoglycan.  相似文献   

4.
High-performance liquid chromatographic analyses of chondroitin lyase AC or ABC hydrolysates revealed unexpected high content of material coeluting with the nonsulfated disaccharide 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-d-galactose. Incubation of a commercial preparation of the 6-sulfated disaccharide, 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-6-O-sulfo-d-galactose with “enriched Tris buffer” generated material coeluting with nonsulfated disaccharide. The amount of material exhibiting this anomalous chromatographic behavior was proportional to the amount of 6-sulfated disaccharide added to the incubation mixture. This suggested a precursor/product relationship between the 6-sulfated disaccharide and the anomalous peak. The result was specific for the 6-sulfated disaccharide: incubation of the 4-sulfated disaccharide, 2-acetamido-2-deoxy-3-O-(β-d-gluco-4-enepyranosyl uronic acid)-4-O-sulfo-d-galactose, with enriched Tris buffer did not generate material with anomalous chromatographic properties. When [35S]sulfate labeled cartilage glycosaminoglycans were hydrolyzed with chondroitin lyases, some of the radioactivity coeluted with the nonsulfated disaccharide. Thus, buffer-induced modification of 6-sulfated disaccharide was not caused by hydrolysis of ester sulfate. Although the proportion of the 6-sulfated disaccharide which was recovered in the anomalous peak was constant for incubations done simultaneously, incubations done at different times gave variable results. Thus, control incubations of 6-sulfated disaccharide with chondroitinase buffer must be included with each reaction series to allow correction for the proportion of the material eluting with nonsulfated disaccharide which is actually 6-sulfated.  相似文献   

5.
Topically applied heparin and heparan sulfate disaccharides, with the basic structure delta-4,5 uronyl-(1----4)-glucosamine and bearing a sulfate at the C-6 position of the glucosamine residue, are antihemostatics as potent as heparin, producing uncontrollable hemorrhage from small blood vessels. The finding that other sulfated disaccharides with the same sulfate:hexosamine:uronic acid ratios but with the sulfate at a different position (C-2), or with different glycosidic linkage (1----3), were inactive as inhibitors of hemostasis indicates that a specific structure is needed to produce the effect. The inhibitory activity of the normal hemostatic process could be reversed by ATP. Molecular models show that part of the disaccharide inhibitors and ATP hold a similar structural conformation.  相似文献   

6.
High-voltage capillary zone electrophoresis (CZE) has been used for the first time in the analysis of non-, mono-, di-, and trisulfated disaccharides derived from chondroitin sulfate, dermatan sulfate, and hyaluronic acid. These glycosaminoglycans are first depolymerized using polysaccharide lyases. The resulting unsaturated disaccharide products can be detected by their ultraviolet absorbance at 232 nm. Different retention times were obtained for each unsaturated disaccharide analyzed by CZE. The application of a constant voltage across a 70-cm fused silica capillary using a single, simple buffer system resolved an eight-component mixture within 40 min. Quantitation of disaccharides derived from chondroitin sulfate using chondroitin ABC lyase (EC 4.2.2.4) and mixtures of unsaturated disaccharide standards was possible requiring only picogram quantities of sample. The disaccharides examined had a net charge of from -1 to -4 and were resolved primarily on the basis of net charge and secondarily on the basis of charge distribution. Two unsulfated disaccharides both containing the same unsaturated uronic acid residue were analyzed. One was from chondroitin having an N-acetylgalactosyl residue and one from hyaluronate having an N-acetylglycosyl residue. Despite the fact that they differed only by the chirality at one center, these disaccharides were resolved by CZE. CZE is a fast and simple method that represents a powerful new tool for analysis and separation of acidic disaccharide components of glycosaminoglycans.  相似文献   

7.
A differentiated population of cells with metachromatically staining granules and surface IgE receptors was obtained from mouse bone marrow cultured for 2 weeks in the presence of conditioned medium derived from concanavalin A-stimulated splenocytes. The cells were found to incorporate large amounts of [35S]sulfate into an intracellular 35S-labeled proteoglycan of Mr approximately 200,000 containing a maximum of seven glycosaminoglycan side chains (Mr = 25,000). After chondroitinase ABC treatment of density gradient-purified [3H] serine-labeled proteoglycan, the resulting core was Mr approximately 26,000 as assessed by gel filtration. Two-dimensional cellulose acetate electrophoresis of beta-eliminated 35S-labeled glycosaminoglycan revealed a single type of glycosaminoglycan that migrated at the position of oversulfated chondroitin sulfate E from squid cartilage. Chondroitinase ABC degradation of the 35S-labeled glycosaminoglycan yielded two cleavage products in approximately equal molar amounts which co-migrated in both descending paper chromatography and high voltage paper electrophoresis with a monosulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and a disulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-6-di-O-sulfo-D-galactose. The release of some free [35S]sulfate from the oversulfated disaccharide with either chondro-4-sulfatase or chondro-6-sulfatase and the complete desulfation by their combined action established that the oversulfated disaccharide contained N-acetylgalactosamine-4,6-disulfate. The 35S]labeled proteoglycan of these unique IgE receptor-bearing and histamine-containing cells, therefore, is composed of chondroitin sulfate E rather than heparin glycosaminoglycan, and thus is the first identification of such an intracellular localized proteoglycan in a mammalian cell.  相似文献   

8.
Heparan sulfate isolated from mammalian arterial tissue inhibits the growth of homologous arterial smooth muscle cells when added to subconfluent cell cultures at a concentration of 50 to 100 micrograms/ml culture medium. Disintegration of the heparan sulfate molecule by hydrazinolysis that deacetylates N-acetylglucosaminyl residues and by subsequent treatment with nitrous acid at pH 3.9 results in the formation of a mixture of oligosaccharides which was further resolved into sulfate-enriched oligosaccharides with antiproliferative activity in an in vitro bioassay system. A decasaccharide and dodeca/tetradecasaccharide fraction had a significantly higher antiproliferative effect on arterial smooth muscle cells than the native heparan sulfate molecule. The antiproliferative oligosaccharides have a sulfate content of 0.9 to 1.2 sulfate groups/disaccharide unit and consist of 60 to 70% monosulfated, disulfated, and trisulfated disaccharide units. Up to 32% of the sulfate groups were in 2-position of the uronic acid. In contrast, nitrous acid degradation of heparan sulfate at pH 1.5, which cleaves glycosidic linkages of N-sulfoglucosaminyl residues, results in the formation of sulfate-poor or sulfate-free oligosaccharides without antiproliferative potency. The results indicate that (a) heparan sulfate has a heterogeneous molecular organization where sulfate-rich domains are separated by sulfate-poor sequences and that (b) the antiproliferative activity of heparan sulfate resides in domains enriched with 2-O-sulfated uronic acid residues.  相似文献   

9.
1. Preparations of heparin and heparan sulphate were degraded with HNO2. The resulting disaccharides were isolated by gel chromatography, reduced with either NaBH4 or NaB3H4 and were then fractionated into non-sulphated, monosulphated and disulphated species by ion-exchange chromatography or by paper electrophoresis. The non-sulphated disaccharides were separated into two, and the monosulphated disaccharides into three, components by paper chromatography. 2. The uronic acid moieties of the various non- and mono-sulphated disaccharides were identified by means of radioactive labels selectively introduced into uronic acid residues (3H and 14C in D-glucuronic acid, 14C only in L-iduronic acid units) during biosynthesis of the polysaccharide starting material. Labelled uronic acids were also identified by paper chromatography, after liberation from disaccharides by acid hydrolysis or by glucuronidase digestion. Similar procedures, applied to disaccharides treated with NaB3H4, indicated 2,5-anhydro-D-mannitol as reducing terminal unit. On the basis of these results, and the known positions and configurations of the glycosidic linkages in heparin, the two non-sulphated disaccharides were identified as 4-O-(beta-D-glucopyranosyluronic acid)-2,5-anhydro-D-mannitol and 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol. 3. The three monosulphated [1-3H]anhydromannitol-labelled disaccharides were subjected to Smith degradation or to digestion with homogenates of human skin fibroblasts, and the products were analysed by paper electrophoresis. The results, along with the 1H n.m.r. spectra of the corresponding unlabelled disaccharides, permitted the allocation of O-sulphate groups to various positions in the disaccharides. These were thus identified as 4-O-(beta-D-glucopyranosyl-uronic acid)-2,5-anhydro-D-mannitol 6-sulphate, 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol 6-sulphate and 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol. The last-mentioned disaccharide was found to be a poor substrate for the iduronate sulphatase of human skin fibroblasts, as compared with the disulphated species, 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol 6-sulphate. 4. The identified [1-3H]anhydromannitol-labelled disaccharides were used as reference standards in a study of the disaccharide composition of heparins and heparan sulphates. Low N-sulphate contents, most pronounced in the heparin sulphates, were associated with high ratios of mono-O-sulphated/di-O-sulphated (N-sulphated) disaccharide units, and in addition, with relatively large amounts of 2-sulphated L-iduronic acid residues bound to C-4 of N-sulpho-D-glucosamine units lacking O-sulphate substituents.  相似文献   

10.
Dermatan sulfate was partially depolymerized with chondroitin ABC lyase to obtain an oligosaccharide mixture from which an unsaturated disulfated tetrasaccharide was purified and characterized using nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry. Chemical removal of the unsaturated uronate residue with mercuric acetate, followed by de-4-O-sulfation with arylsulfatase B (N-acetylgalactosamine 4-sulfatase) and N- acetylhexo-saminidase catalyzed removal of the 2-acetamido-2-deoxy-D-galactospyranosyl residue at the non-reducing end afforded a monosulfated disaccharide of the structure -L-idopyranosyluronic acid (13)-,-D-2-acetamido-2-deoxy-4-O-sulfo galactopyranose. This monosulfated disaccharide serves as a substrate for mammalian -L-iduronidase as demonstrated using fluorophore assisted carbohydrate electrophoresis.  相似文献   

11.
Heparin and heparan sulfate fragments, obtained by bacterial heparinase and heparitinases, bearing an unsaturation at C4-C5 of the uronic acid moiety, are able to produce up to 80% reduction of the cytosolic calcium of smooth muscle cell lines. Unsaturated disaccharides from chondroitin sulfate, dermatan sulfate, and hyaluronic acid are inactive, indicating that, besides the unsaturation of the uronic acid, a vicinal 1 --> 4 glycosidic linkage is needed. An inverse correlation between the molecular weight and activity is observed. Thus, the ED(50) of the N-acetylated disaccharide derived from heparan sulfate (430 Da) is 88 microm compared with 250 microm of the trisulfated disaccharide (650 Da) derived from heparin. Except for enoxaparin (which contains an unsaturation at the non-reducing end and 1 --> 4 glycosidic linkage), other low molecular weight heparins and native heparin are practically inactive in reducing the cytosolic calcium levels. Thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor), vanadate (cytoplasmic membrane Ca(2+)-ATPase inhibitor), and nifedipine and verapamil (Ca(2+) channel antagonists) do not interfere with the effect of the trisulfated disaccharide upon the decrease of the intracellular calcium. A significant decrease of the activity of the trisulfated disaccharide is observed by reducing extracellular sodium, suggesting that the fragments might act upon the Na(+)/Ca(2+) exchanger promoting the extrusion of Ca(2+). This was further substantiated by binding experiments and circular dichroism analysis with the exchanger inhibitor peptide.  相似文献   

12.
Four constitutive enzymes, capable of degrading keratan sulfate, were isolated from Pseudomonas sp.: a particulate endoglycosidase, a soluble endoglycosidase, a soluble exo-beta-D-galactosidase and a soluble exo-beta-D-N-acetylglucosaminidase. The endoglycosidases were shown to act only upon keratan sulfate forming beta-D-2-acetamido-2-deoxy-6-O-sulfoglucosyl-(1----3)-D-galactose, as the main product. This results indicates that the enzyme catalyses the hydrolysis of beta-D-galactose-(1----4)-N-acetylglucosamine linkages. It was also shown that this monosulfated disaccharide inhibits the particulate keratan sulfate endoglycosidase. The bovine nucleus pulposus keratan sulfate is depolymerized at a lower rate and extent when compared to the corneal keratan sulfate. The soluble endoglycosidase is very labile, in contrast to the particulate enzyme, which has been stored at -20 degrees C or at 4 degrees C for at least 12 months with no loss in activity. The particulate endoglycosidase and the soluble exo-beta-D-galactosidase and exo-beta-D-N-acetylglucosaminidase are induced when the bacteria is grown in adaptative media containing either 0.1% keratan sulfate or 0.1% chondroitin sulfate. Furthermore, particulate forms of the exoenzymes were detected. The soluble endoglycosidase specific activity, in contrast, is approximately the same in extracts of cells grown in glucose, keratan sulfate or chondroitin sulfate. A chondroitin sulfate lyase was also identified in the soluble extracts of Pseudomonas sp. cells. This enzyme depolymerizes chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid forming unsaturated disaccharides as main products. It is also active upon the glucuronic-acid-containing regions of the dermatan sulfate molecules. The properties of the soluble enzymes, further purified by ion-exchange chromatography, and of the particulate keratan sulfate endoglycosidase are presented.  相似文献   

13.
The isolation, purification and structural characterization of human liver heparan sulfate are described. 1H-NMR spectroscopy demonstrates the purity of this glycosaminoglycan (GAG) and two-dimensional 1H-NMR confirmed that it was heparan sulfate. Enzymatic depolymerization of the isolated heparan sulfate, followed by gradient polyacrylamide gel, confirmed its heparin lyase sensitivity. The concentration of resulting unsaturated disaccharides was determined using reverse phase ion-pairing (RPIP) HPLC with post column derivatization and fluorescence detection. The results of this analysis clearly demonstrate that the isolated GAG was heparan sulfate, not heparin. Human liver heparan sulfate was similar to heparin in that it has a reduced content of unsulfated disaccharide and an elevated average sulfation level. The antithrombin-mediated anti-factor Xa activity of human liver heparan sulfate, however, was much lower than porcine intestinal (pharmaceutical) heparin but was comparable to standard porcine intestinal heparan sulfate. Moreover, human liver heparan sulfate shows higher degree of sulfation than heparan sulfate isolated from porcine liver or from the human hepatoma Hep 2G cell line.  相似文献   

14.
Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.  相似文献   

15.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

16.
Heparin like glycosaminoglycans (HLGAGs) are struc-turally complex linear polysaccharides composed of re-peating disaccharide unit of uronic (α-L-iduronic or β-D-glucuronic) acid linked 1→4 to α-D-glucosamine, whichis a highly variable sulfation pattern and ascribes to eachglycosaminoglycan (GAG) chain a unique structuralsignature. This signature dictates specific the GAG-pro-tein interactions underlying critical biological processesrelated to cell and tissue functions [1]. Only in fe…  相似文献   

17.
Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.  相似文献   

18.
A sensitive and selective HPLC method for the determination of the disaccharides of chondroitin sulfate in horse and dog plasma was validated. Chondroitin sulfate is degraded by chondroitinase ABC to three primary unsaturated disaccharides, (1) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose, (2) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and (3) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose, when treated with chondroitinase. Plasma samples (0.5 ml) were treated with 50 mU of chondroitinase ABC in 50 microl of 1 mM sodium phosphate buffer (pH 7.0) at 37 degrees C for 6 h. The samples were extracted with 25% trifluoroacetic acid in ethanol. The resultant samples were derivatized with 1% dansylhydrazine in ethanol at 40 degrees C for 3 h. The chromatographic conditions consisted of fluorescence detection (excitation at 350 nm and emission at 530 nm), mu-Bondapack NH(2) (300 x 3.9 mm), and mobile phase of acetonitrile:100 mM acetate buffer, pH 5.6 (76:24), pumped at 1.0 ml/min. The standard curves for each chondroitin disaccharide showed linearity over the selected concentration range (r > or = 0.99). The intraday percentage relative standard deviation was < or =9.5% and the interday precision was < or =6.9% or less. The relative intraday and interday error ranged from -7.3 to 6.6% for each chondroitin disaccharide in the plasma. The extraction recovery was found to be in the range of 90-96%. The validated method accurately quantitated the disaccharides of chondroitin sulfate after administration to dogs and horses.  相似文献   

19.
Glycosaminoglycans were prepared from the Engelbreth-Holm-Swarm mouse tumor. Enzymatic analysis demonstrated heparan sulfate (95.8%) and chondroitinase ABC-sensitive galactosaminoglycans (4.2%). HPLC analysis of the disaccharide units showed that heparan sulfate chains were undersulfated on average, comprising approximately 30% nonsulfated and 60% N-sulfated disaccharide units with small proportions of other monosulfated and disulfated disaccharide units. In contrast, galactosaminoglycan chains were oversulfated, containing an appreciable proportion (15%) of a 4,6-disulfated (so-called E-type) disaccharide unit in addition to 51% of a 4-sulfated, 22% of a 6-sulfated, and 11% of a nonsulfated disaccharide unit. The significance of the oversulfated disaccharide structure is discussed in relation to the possible regulation of functions of hybrid proteoglycans from which the galactosaminoglycan chains are derived.  相似文献   

20.
Heparan sulfate isolated from bovine arterial tissue by a multistep purification procedure or from arterial tissue proteoheparan sulfate by beta-elimination exhibits antiproliferative activity toward arterial smooth muscle cells when added to subconfluent cell cultures in a concentration of 50-100 micrograms/ml medium. Enzymatic disintegration of heparan sulfate by heparitinases I and II and isolation of the resulting oligosaccharides indicate that the antiproliferative activity of the heparan sulfate molecule resides in a sulfate-rich octa/decasaccharide domain which is separated by longer sequences of sulfate-free or sulfate-poor N-acetylglucosamine containing disaccharide units. The octa/decasaccharide fraction has a 3-4-fold higher antiproliferative activity than the native heparan sulfate molecule and contains 45% of a disulfated disaccharide which consists of 2-O-sulfated uronic acid and N-sulfated glucosamine (UA(2S)-GlcNS and 12% of a trisulfated disaccharide (UA(2S)-GlcNS(6S). A sulfate-rich hexasaccharide fraction containing 14% of the disulfated disaccharide but 18% of the trisulfated disaccharide has negligible antiproliferative activity. The results indicate the presence of specific structural determinants in the arterial heparan sulfate molecule which may have the function of an endogenous inhibitor of arterial smooth muscle cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号