首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

2.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

3.
目的:总结类风湿关节炎(RA)患者拇长屈肌腱(FHL)病变的超声特点及二者间的相关性。方法:回顾性分析2010年2月至2011年6月因足部疼痛于我院就诊的60例(120足)RA患者资料。应用彩色多普勒超声诊断仪探查拇长屈肌腱,根据超声探查拇长屈肌腱病变情况的结果将患者分为3组:肌腱完整组(A组,45足),肌腱周围炎症组(B组,49足),肌腱断裂组(C组,26足)。对拇长屈肌腱病变的特点及部位进行描述,并将拇长屈肌腱病变严重程度与患者年龄及病程进行相关性分析。结果:45足肌腱完整,49足出现不同部位的肌腱周围炎症(内踝转折处17足,henrry’s结节处11足,第一跖趾关节跖侧21足),26足发生肌腱断裂(9足发生于内踝转折处,17足发生于跖趾关节跖侧)。肌腱病变的发生率71%。A组平均年龄49.9±9.2岁,病程4.7±2.6年;B组平均年龄56.2±9.2岁,病程16.2±7.4年;C组平均年龄54.7±8.0岁,病程20.9±4.4年。三组间上述参数差异具有统计学意义(P0.05)。结论:拇长屈肌腱是类风湿关节炎足部结构的常见受累部位,其病变多发生于内踝转折处,henrry's结节处及第一跖趾关节跖侧,但henrry’s结节处的断裂少见。在对类风湿关节炎平足患者进行肌腱转位手术时,应充分考量拇长屈肌腱的病变。  相似文献   

4.
Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.  相似文献   

5.
Disorders of the first ray of the foot (defined as the hard and soft tissues of the first metatarsal, the sesamoids, and the phalanges of the great toe) are common, and therapeutic interventions to address these problems range from alterations in footwear to orthopedic surgery. Experimental verification of these procedures is often lacking, and thus, a computational modeling approach could provide a means to explore different interventional strategies. A three-dimensional finite element model of the first ray was developed for this purpose. A hexahedral mesh was constructed from magnetic resonance images of the right foot of a male subject. The soft tissue was assumed to be incompressible and hyperelastic, and the bones were modeled as rigid. Contact with friction between the foot and the floor or footwear was defined, and forces were applied to the base of the first metatarsal. Vertical force was extracted from experimental data, and a posterior force of 0.18 times the vertical force was assumed to represent loading at peak forefoot force in the late-stance phase of walking. The orientation of the model and joint configuration at that instant were obtained by minimizing the difference between model predicted and experimentally measured barefoot plantar pressures. The model were then oriented in a series of postures representative of push-off, and forces and joint moments were decreased to zero simultaneously. The pressure distribution underneath the first ray was obtained for each posture to illustrate changes under three case studies representing hallux limitus, surgical arthrodesis of the first ray, and a footwear intervention. Hallux limitus simulations showed that restriction of metatarsophalangeal joint dorsiflexion was directly related to increase and early occurrence of hallux pressures with severe immobility increasing the hallux pressures by as much as 223%. Modeling arthrodesis illustrated elevated hallux pressures when compared to barefoot and was dependent on fixation angles. One degree change in dorsiflexion and valgus fixation angles introduced approximate changes in peak hallux pressure by 95 and 22 kPa, respectively. Footwear simulations using flat insoles showed that using the given set of materials, reductions of at least 18% and 43% under metatarsal head and hallux, respectively, were possible.  相似文献   

6.
Achilles tendon (AT) compliance can affect the generation and transmission of triceps surae muscle forces, and thus has important biomechanical consequences for walking performance. However, the uniarticular soleus (SOL) and the biarticular (GAS) function differently during walking, with in vivo evidence suggesting that their associated fascicles and tendinous structures exhibit unique kinematics during walking. Given the strong association between muscle fiber length, velocity and force production, we conjectured that SOL and GAS mechanics and energetic behavior would respond differently to altered AT compliance. To test this, we characterized GAS and SOL muscle and tendon mechanics and energetics due to systematic changes in tendon compliance using musculoskeletal simulations of walking. Increased tendon compliance enlarged GAS and SOL tendon excursions, shortened fiber operation lengths and affected muscle excitation patterns. For both muscles, an optimal tendon compliance (tendon strains of approximately 5% with maximum isometric force) existed that minimized metabolic energy consumption. However, GAS muscle-tendon mechanics and energetics were significantly more sensitive to changes in tendon compliance than were those for SOL. In addition, GAS was not able to return stored tendon energy during push-off as effectively as SOL, particularly for larger values of tendon compliance. These fundamental differences between GAS and SOL sensitivity to altered tendon compliance seem to arise from the biarticular nature of GAS. These insights are potentially important for understanding the functional consequences of altered Achilles tendon compliance due to aging, injury, or disease.  相似文献   

7.
During human running, short latency stretch reflexes (SLRs) are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.  相似文献   

8.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

9.
The functional anatomy of the hominin foot has played a crucial role in studies of locomotor evolution in human ancestors and extinct relatives. However, foot fossils are rare, often isolated, and fragmentary. Here, we describe a complete hominin second metatarsal (StW 89) from the 2.0-2.6 million year old deposits of Member 4, Sterkfontein Cave, South Africa. Like many other fossil foot bones, it displays a mosaic of derived human-like features and primitive ape-like features. StW 89 possesses a domed metatarsal head with a prominent sulcus, indicating dorsiflexion at the metatarsophalangeal joint during bipedal walking. However, while the range of motion at the metatarsophalangeal joint is human-like in dorsiflexion, it is ape-like in plantarflexion. Furthermore, StW 89 possesses internal torsion of the head, an anatomy decidedly unlike that found in humans today. Unlike other hominin second metatarsals, StW 89 has a dorsoplantarly gracile base, perhaps suggesting more midfoot laxity. In these latter two anatomies, the StW 89 second metatarsal is quite similar to the recently described second metatarsal of the partial foot from Burtele, Ethiopia. We interpret this combination of anatomies as evidence for a low medial longitudinal arch in a foot engaged in both bipedal locomotion, but also some degree of pedal, and perhaps even hallucal, grasping. Additional fossil evidence will be required to determine if differences between this bone and other second metatarsals from Sterkfontein reflect normal variation in an evolving lineage, or taxonomic diversity.  相似文献   

10.
The mechanical response of active human muscle during and after stretch   总被引:2,自引:0,他引:2  
Five subjects contracted forearm supinator muscles which were stretched after development of maximal isometric torque. The ratio of torque at the end of stretch over isometric torque at that position was calculated as excess torque. Excess torque increased with stretch velocity and decreased with stretch amplitude, and it was not dependent upon final muscle length. The rate of decay of torque following stretch could not be shown to depend upon stretch variables. The absence of significant changes in myoelectric activity suggested that with high initial forces, reflex activity did not account for the observed changes. Time-constants of decay (0.15 s to 1.8 s) were much greater than time-constants of rise (approx. 0.07 s) of isometric torque at the same muscle length. This indicates that interaction of series elastic and contractile elements is not the sole cause of prolonged torque following stretch. It is concluded that stretch temporarily enhances the intrinsic contractile properties of a group of human muscles in a manner similar to, but quantitatively different from that seen in isolated muscle preparations.  相似文献   

11.
Chronic recording techniques in freely walking cats have been used to sample unitary activity from most large myelinated afferent classes. Cutaneous mechanoreceptors are highly sensitive and generate regular activity patterns predictable from their modalities. Knee joint afferents can fire briskly midrange locomotory movements but appear to be influenced by factors other than joint angle. Golgi tendon organs generate activity consistent with sensitivity to active muscle tension. Muscle spindle afferents do not appear to conform to any single functional pattern for all muscles. It is suggested that degree and rate of stretch are sensed by spindles (possibly under dynamic fusimotor bias) in extensor muscles which normally undergo isometric or lengthening contractions whereas rapidly modulated static fusimotor activity is employed to preserve spindle activity during the rapidly shortening contractions of flexor muscles. Both patterns may be represented in different spindles of bifunctional, biarticular muscles such as rectus femoris and sartorius.  相似文献   

12.
Stretching plays an important role in the treatment of plantar fasciitis. Information on the internal stresses/strains of the plantar fascia under stretch is useful in enhancing knowledge on the stretch mechanisms. Although direct measurement can monitor plantar fascia changes, it is invasive and gathers only localized information. The purpose of this paper was to construct a three-dimensional finite element model of the foot to calculate the stretch effects on plantar fascia and monitor its stress/strain distributions and concentrations. A three-dimensional foot model was developed and contained 26 bones with joint cartilages, 67 ligaments and a fan-like solid plantar fascia modeling. All tissues were idealized as linear elastic, homogeneous and isotropic whilst the plantar fascia was assigned as hyperelastic to represent its nonlinearity. The plantar fascia was monitored for its biomechanical responses under various stretch combinations: three toe dorsiflexion angles (windlass effect: 15 degrees , 30 degrees and 45 degrees ) and five Achilles tendon forces (100, 200, 300, 400 and 500N). Our results indicated that the plantar fascia strain increased as the dorsiflexion angles increased, and this phenomenon was enhanced by increasing Achilles tendon force. A stress concentration was found near the medial calcaneal tubercle, and the fascia stress was higher underneath the first foot ray and gradually decreased as it moved toward the fifth ray. The current model recreated the position of the foot when stretch is placed on the plantar fascia. The results provided a general insight into the mechanical and biomechanical aspects of the influences of windlass mechanism and Achilles tendon force on plantar fascia stress and strain distribution. These findings might have practical implications onto plantar fascia stretch approaches, and provide guidelines to its surgical release.  相似文献   

13.
Stretch reflex responses of m. biceps brachii and m. brachioradialis of ten normal adults were studied before and after 20 days of strict bed rest. A standard torque perturbation (15 Nm, 170 ms) was applied to the forearm to induce reflex electromyographic (EMG) activities of the two muscles investigated. Totally 30 perturbations were applied during submaximal isometric elbow flexion movements at 80 deg flexed joint angle, and ensemble averaged EMG waveforms were calculated by aligning the signal to the onset of perturbations. All subjects showed that both short and long latency stretch reflex FMG activities of m. biceps brachii were reduced immediately after 20 days bed rest, and then recovered gradually to pre-bed rest levels at one- to two-months after bed rest, whereas there was no such variation in the stretch reflex induced in m. brachioradialis. It was demonstrated that the muscle stretch reflex gain might be reduced with long-term inactivity, but the effects on stretch reflex gains were different in the two tested muscles.  相似文献   

14.
A three-dimensional musculoskeletal model of the lower limb was developed to study the influence of biarticular muscles on the muscle force distribution and joint loads during walking. A complete walking cycle was recorded for 9 healthy subjects using the standard optoelectronic motion tracking system. Ground contact forces were also measured using a 6-axes force plate. Inverse dynamics was used to compute net joint reactions (forces and torques) in the lower limb. A static optimization method was then used to estimate muscle forces. Two different approaches were used: in the first one named global method, the biarticular muscles exerted a torque on the two joints they spanned at the same time, and in the second one called joint-by-joint method, these biarticular muscles were divided into two mono-articular muscles with geometrical (insertion, origin, via points) and physiological properties remained unchanged. The hip joint load during the gait cycle was then calculated taking into account the effect of muscle contractions. The two approaches resulted in different muscle force repartition: the biarticular muscles were favoured over any set of single-joint muscles with the same physiological function when using the global method. While the two approaches yielded only little difference in the resultant hip load, the examination of muscle power showed that biarticular muscles could produce positive work at one joint and negative work at the other, transferring energy between body segments and thus decreasing the metabolic cost of movement.  相似文献   

15.
There is a dearth of information on navicular, cuboid, cuneiform and metatarsal kinematics during walking and our objective was to study the kinematic contributions these bones might make to foot function. A dynamic cadaver model of walking was used to apply forces to cadaver feet and mobilise them in a manner similar to in vivo. Kinematic data were recorded from 13 cadaver feet. Given limitations to the simulation, the data describe what the cadaver feet were capable of in response to the forces applied, rather than exactly how they performed in vivo. The talonavicular joint was more mobile than the calcaneocuboid joint. The range of motion between cuneiforms and navicular was similar to that between talus and navicular. Metatarsals four and five were more mobile relative to the cuboid than metatarsals one, two and three relative to the cuneiforms. This work has confirmed the complexity of rear, mid and forefoot kinematics. The data demonstrate the potential for often-ignored foot joints to contribute significantly to the overall kinematic function of the foot. Previous emphasis on the ankle and sub talar joints as the principal articulating components of the foot has neglected more distal articulations. The results also demonstrate the extent to which the rigid segment assumptions of previous foot kinematics research have over simplified the foot.  相似文献   

16.
Tendons attach muscles to bone and thereby transmit tensile forces during joint movement. However, a detailed understanding of the mechanisms that establish the mechanical properties of tendon has remained elusive because of the practical difficulties of studying tissue mechanics in vivo. Here we have performed a study of tendon-like constructs made by culturing embryonic tendon cells in fixed-length fibrin gels. The constructs display mechanical properties (toe–linear–fail stress–strain curve, stiffness, ultimate tensile strength, and failure strain) as well as collagen fibril volume fraction and extracellular matrix (ECM)/cell ratio that are statistically similar to those of embryonic chick metatarsal tendons. The development of mechanical properties during time in culture was abolished when the constructs were treated separately with Triton X-100 (to solubilise membranes), cytochalasin (to disassemble the actin cytoskeleton) and blebbistatin (a small molecule inhibitor of non-muscle myosin II). Importantly, these treatments had no effect on the mechanical properties of the constructs that existed prior to treatment. Live-cell imaging and 14C-proline metabolic labeling showed that blebbistatin inhibited the contraction of the constructs without affecting cell viability, procollagen synthesis, or conversion of procollagen to collagen. In conclusion, the mechanical properties per se of the tendon constructs are attributable to the ECM generated by the cells but the improvement of mechanical properties during time in culture was dependent on non-muscle myosin II-derived forces.  相似文献   

17.
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.  相似文献   

18.
The dynamics of the center of mass (CoM) during walking and running at various gait conditions are well described by the mechanics of a simple passive spring loaded inverted pendulum (SLIP). Due to its simplicity, however, the current form of the SLIP model is limited at providing any further information about multi-segmental lower limbs that generate oscillatory CoM behaviors and their corresponding ground reaction forces. Considering that the dynamics of the CoM are simply achieved by mass-spring mechanics, we wondered whether any of the multi-joint motions could be demonstrated by simple mechanics. In this study, we expand a SLIP model of human locomotion with an off-centered curvy foot connected to the leg by a springy segment that emulates the asymmetric kinematics and kinetics of the ankle joint. The passive dynamics of the proposed expansion of the SLIP model demonstrated the empirical data of ground reaction forces, center of mass trajectories, ankle joint kinematics and corresponding ankle joint torque at various gait speeds. From the mechanically simulated trajectories of the ankle joint and CoM, the motion of lower-limb segments, such as thigh and shank angles, could be estimated from inverse kinematics. The estimation of lower limb kinematics showed a qualitative match with empirical data of walking at various speeds. The representability of passive compliant mechanics for the kinetics of the CoM and ankle joint and lower limb joint kinematics implies that the coordination of multi-joint lower limbs during gait can be understood with a mechanical framework.  相似文献   

19.
The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body.  相似文献   

20.
Sensory activity contributes to motor control in two fundamentally different ways. It may mediate 'error signals' following sudden external perturbations and it may contribute to the pre-programmed motoneuronal drive. Here we review data, which illustrate these two functions of sensory feedback in relation to human walking. When ankle plantarflexors are unloaded in the stance phase there is a sudden decrease in the sensory activity in muscle and tendon afferents from the active muscles. This decrease in sensory activity results in a drop in EMG activity recorded from the soleus muscle, which demonstrates that the sensory activity contributes importantly to the activation of the muscles. Data suggests that a spinal pathway from gr. II muscle afferents is responsible for this positive feedback contribution to the motoneuronal drive during walking.When cutaneous nerves from the foot are stimulated in the early swing phase of walking a late reflex response may be observed in the tibialis anterior muscle. This reflex may help to ensure that the foot is lifted effectively over an obstacle. Data suggest that this reflex response is at least partly mediated by a transcortical reflex pathway. It seems to be important that reactions to external perturbations are integrated at a supraspinal level during human walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号