首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

2.
T Mine  S Kimura  H Osawa  E Ogata 《Life sciences》1986,38(25):2285-2292
Cobalt ions (2 mM) inhibited the glycogenolysis induced by phenylephrine and glucagon in perfused rat liver. Cobalt ions also inhibited 45Ca++ efflux from prelabelled livers induced by phenylephrine and glucagon. In addition, they inhibited the rise in tissue levels of cyclic AMP caused by glucagon, but did not inhibit the stimulation of 45Ca++ efflux or glycogenolysis by cyclic AMP or dibutyryl cyclic AMP. The specific binding of glucagon and alpha-agonist to hepatocytes was not inhibited by cobalt ions. These data suggest that cobalt ions, presumably through their high affinity for calcium binding sites on membranes inhibit the stimulation of glycogenolysis by phenylephrine and glucagon in distinct ways; one by inhibiting calcium mobilization and the other by inhibiting cyclic AMP production. Therefore, it is conceivable that membrane-bound calcium plays an important role in stimulating Ca++ mobilization by phenylephrine, and cyclic AMP production by glucagon.  相似文献   

3.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

4.
1. The total calcium concentration in rat hepatocytes was 7.9 microgram-atoms/g dry wt.; 77% of this was mitochondrial. Approx. 20% of cell calcium exchanged with 45Ca within 2 min. Thereafter incorporation proceeded at a low rate to reach 28% of total calcium after 60 min. Incorporation into mitochondria showed a similar time course and accounted for 20% of mitochondrial total calcium after 60 min. 2. The alpha-adrenergic agonists phenylephrine and adrenaline + propranolol stimulated incorporation of 45Ca into hepatocytes. Phenylephrine was shown to increase total calcium in hepatocytes. Phenylephrine inhibited efflux fo 45Ca from hepatocytes perifused with calcium-free medium. 3. Glucagon, dibutryl cyclic AMP and beta-adrenergic agonists adrenaline and 3-isobutyl-1-methyl-xanthine stimulated calcium efflux from hepatocytes perifused with calcium-free medium. The effect of glucagon was blocked by insulin. Insulin itself had no effect on calcium efflux and it did not affect the response to dibutyryl cyclic AMP. 4. Incorporation of 45Ca into mitochondria in hepatocytes was stimulated by phenylephrine and inhibited by glucagon and by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The effect of glucagon was blocked by insulin. 5. Ionophore A23187 stimulated hepatocyte uptake of 45Ca, uptake of 45Ca into mitochondria in hepatocytes and efflux of 45Ca into a calcium-free medium.  相似文献   

5.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the absence of cyclic nucleotides heart microsomes have two classes of calcium binding sites with binding constants of 0.69 and 0.071 micron-1 and capacities of 2.2 and 9.7 nmol/mg protein, respectively. Neither cyclic AMP nor monobutyryl cyclic AMP affect binding but cyclic GMP and monobutyryl cyclic GMP cause the complete loss of the high affinity calcium binding sites, Cyclic GMP (but not monobutyryl cyclic GMP) also causes a decrease in the binding constant of the low affinity binding sites. AMP, GMP and Tris-butyrate do not affect calcium binding. The effects of the cyclic nucleotides are direct and are not mediated by protein phosphorylation. Phosphorylation of microsomal proteins increases the binding constant but not the capacity of the high affinity calcium binding sites. The capacity and also, perhaps, binding constant of the low affinity sites is also increased by phosphorylation. In additon to their effects on calcium binding the cyclic nucleotides also affect the movements of calcium into and out of the microsomes. The effects are again direct and not mediated by protein phosphorylation. Cyclic GMP decreases the rate of Ca2+ efflux from preloaded cardiac microsomes and also appears to decrease the rate of uptake of Ca2+ by cardiac microsomes though this effect is less clear cut than the action on efflux. The cyclic nucleotide has a half maximal effect at a concentration of 100 microns. By contrast cyclic AMP increases the rate of influx of Ca2+ into heart microsomes and the rate of efflux of Ca2+ from preloaded preparations. The effect is, however, rather slight. It is suggested that the most obvious interpretation of these results is that cyclic GMP decreases the Ca2+ permeability of the cardiac microsomal membrane while cyclic AMP increases the permeability. In contrast to the results found with membrane preparations from certain other tissues phosphorylation of cardiac microsomal proteins does not appear to alter Ca2+ efflux or influx out of, or into, cardiac microsomal preparations. It is thus concluded that phosphorylation of cardiac microsomal proteins does not affect the Ca2+ permeability of the microsomal membrane.  相似文献   

7.
The role of cyclic AMP in stimulus-secretion coupling was investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20–30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both α-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effective. A parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fraction. The results suggest that these drugs are acting on the parotid acinar cell through a β1-adrenergic mechanism.At the lowest concentrations tested, each of the adrenergic agonists stimulated significant α-amylase release with no detectable stimulation of cyclic AMP accumulation. Even in the presence of theophylline, phenylephrine at several concentrations increased α-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intracellular concentration of cyclic AMP may not be necessary for stimulation of α-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of α-amylase release by isoproterenol.Stimulation of α-amylase release by phenylephrine was only partially blocked by either α- or β-adrenerg blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolamine. Phenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and α-amylase release. However, phenoxybenzamine also potentiated the stimulation of α-amylase release by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using α-adrenergic blocking agents as tools for investigation of α- and β-adrenergic antagonism.  相似文献   

8.
Phenylephrine (2.0 microM) induces an alpha 1-receptor-mediated net efflux of Ca2+ from livers of fed rats perfused with medium containing physiological concentrations (1.3 mM) of Ca2+. The onset of efflux (7.1 +/- 0.5 s; n = 16) immediately precedes a stimulation of mitochondrial respiration and glycogenolysis. Maximal rates of efflux are observed between 35 s and 45 s after alpha-agonist administration; thereafter the rate decreases, to be no longer detectable after 3 min. Within seconds of terminating phenylephrine infusion, a net transient uptake of Ca2+ by the liver is observed. Similar effects were observed with vasopressin (1 m-unit/ml) and angiotensin (6 nM). Reducing the perfusate [Ca2+] from 1.3 mM to 10 microM had little effect on alpha-agonist-induced Ca2+ efflux, but abolished the subsequent Ca2+ re-uptake, and hence led to a net loss of 80-120 nmol of Ca2+/g of liver from the tissue. The administration at 5 min intervals of short pulses (90 s) of phenylephrine under these conditions resulted in diminishing amounts of Ca2+ efflux being detected, and these could be correlated with decreased rates of alpha-agonist-induced mitochondrial respiration and glucose output. An examination of the Ca2+ pool mobilized by alpha-adrenergic agonists revealed that a loss of Ca2+ from mitochondria and from a fraction enriched in microsomes accounts for all the Ca2+ efflux detected. It is proposed that the alpha-adrenergic agonists, vasopressin and angiotensin mobilize Ca2+ from the same readily depleted intracellular pool consisting predominantly of mitochondria and the endoplasmic reticulum, and that the hormone-induced enhanced rate of mitochondrial respiration and glycogenolysis is directly dependent on this mobilization.  相似文献   

9.
The effects of vasoactive intestinal polypeptide (VIP) on exocrine protein secretion were studied in enzymatically dispersed cell aggregates from rat parotid glands. VIP (10(-9) - 10(-7) M) stimulated secretion of alpha-amylase in a dose-dependent manner. The VIP-induced release of alpha-amylase was potentiated in the presence of a phosphodiesterase inhibitor. Basal levels of cyclic AMP of the dispersed cells were increased 6.7-fold after stimulation for 10 min by VIP (10(-7) M). The VIP-induced release of alpha-amylase was reduced by 40% when cells were incubated in a Ca2+-free medium in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA). Efflux of 45Ca2+ was significantly increased over basal levels by stimulation with VIP (10(-8) and 10(-7) M), but this increased efflux was approximately only half the increased efflux induced by carbachol (10(-5) M). VIP had no effect on the incorporation of [14C]leucine into protein by parotid cells, whereas incorporation was reduced to 30% of the control value by carbachol (10(-5) M). Thus, the VIP-ergic secretory response in the rat parotid gland is associated with a raised intracellular cyclic AMP level and the mobilisation of a different intracellular Ca2+ pool than that mobilised by carbachol. It is, therefore, closely analogous to the beta-adrenergic response.  相似文献   

10.
The role of extracellular calcium in the glycogenolytic effects of calcium-dependent hormones was examined in a rat liver perfusion system. Decreasing the perfusate CaCl2 concentration resulted in a concentration-dependent inhibition of glucose output by maximal concentrations of vasopressin (20 nM) and angiotensin II (10 nM), but not of glucagon (1.4 nM), cyclic AMP (100 microM), dibutyryl cyclic AMP (10 microM) or phenylephrine (5 microM). However, the effect of phenylephrine was inhibited when livers were perfused with CaCl2-free perfusate containing 0.5 mM EGTA in a duration-dependent manner. These effects were exerted through the inhibition of the maximal response of each hormone, and were associated with a parallel decrease in phosphorylase activation but not with changes in tissue cyclic AMP concentrations. When livers were preloaded with 45Ca for 45 min and then washed for either 15 min or 45 min, these hormones elicited a rapid and transient 45Ca efflux regardless of the perfusate calcium concentration. The sequential perfusion of two hormones resulted in the loss of 45Ca efflux by the second hormone. These results suggest that the glycogenolytic effects of vasopressin and angiotensin II depend on the extracellular calcium and that of phenylephrine primarily on the cellular calcium. It was also demonstrated that these calcium-dependent hormones mobilize calcium from the same pools. However, the mobilization of cellular calcium does not necessarily correlate directly with the glycogenolytic actions of vasopressin and angiotensin II.  相似文献   

11.
S vom Dahl  P Graf    H Sies 《The Biochemical journal》1988,251(3):843-848
A sustained increase in the hepatic release of 3H radioactivity was shown to occur upon hormonal stimulation of perfused rat liver 15-20 h after intraperitoneal injection of 100 microCi of myo-[2-3H]inositol. Hormone-released radioactive material was analysed by t.l.c. and was found to consist predominantly of [3H]inositol, without further metabolites. Vasopressin (14 nM), phenylephrine (1.7 microM), angiotensin II (15 nM), glucagon (0.5 nM) and dibutyryl cyclic AMP (5 microM) exert maximal effects on hepatic inositol efflux after 10-15 min of stimulation. Omission of Ca2+ from the perfusion medium abolishes the hormone-dependent inositol release. LiCl (10 mM) does not significantly affect the basal release of [3H]inositol, but suppresses vasopressin- and angiotensin-triggered inositol release. Inositol efflux induced by glucagon, dibutyryl cyclic AMP and phenylephrine, however, remains essentially unchanged by LiCl infusion. This establishes a further metabolic difference between these two groups of agonists in that stimuli that act through cyclic AMP produce a stimulated outflow of inositol, but apparently without a Li+-sensitive phosphatase being involved in the overall process.  相似文献   

12.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

13.
The effects of short term stimulation of beta-adrenergic receptors and elevations in intracellular cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle cells in vitro has been studied using both the 45Ca2+ flux technique and [3H] nitrendipine-binding experiments. Isoproterenol increased the nitrendipine-sensitive 45Ca2+ influx under depolarizing conditions. The effects of isoproterenol were additive to those of depolarization and were antagonized by alprenolol. Half-maximal inhibition of 45Ca2+ influx induced both by depolarization and by isoproterenol occurred at a nitrendipine concentration of 1 nM. Treatments that resulted in an increased level of intracellular cyclic AMP, such as treatment with 1-methyl-3-isobutylxanthine, theophylline, dibutyryl cyclic AMP, or 8-bromocyclic AMP also resulted in an increased rate of 45Ca2+ entry via nitrendipine-sensitive Ca2+ channel. In contrast, long term treatment of myotubes in culture with isoproterenol and other compounds that increased intracellular cyclic AMP led to a large increase in the number of nitrendipine receptors. This increase was accompanied by a 4-10-fold decrease in the affinity of the receptors for nitrendipine. Alprenolol inhibited the long term effects of isoproterenol. In vivo treatment of 7-day-old chicks with reserpine and alprenolol produced a decrease in the number of skeletal muscle nitrendipine receptors. This decrease in receptor number was accompanied by an increase in the affinity of nitrendipine for its receptor by a factor of 4 to 5. These effects on the nitrendipine receptor were prevented by simultaneous injection of isoproterenol. The results are discussed in relation to the role of beta-adrenergic receptors and intracellular cyclic AMP in the regulation of skeletal muscle Ca2+ channels.  相似文献   

14.
Pancreatic secretory factor (PSF), a 17.5-kDa protein purified from the venom of Gila monster (Heloderma suspectum), stimulated amylase secretion from dispersed rat pancreatic acini more efficiently than CCK-8, bombesin, carbachol and secretin, and without increasing 45Ca2+ efflux and cyclic AMP levels. The secretory action was dependent on the presence of extracellular calcium and was additive to the secretion induced by agents acting via cyclic AMP or via Ca2+ efflux.  相似文献   

15.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

16.
A significant proportion of the steroidogenic response of isolated rat adrenocortical cells to dibutyryl cyclic AMP does not require extracellular calcium, and this component is profoundly depressed by low concentrations of the putative calcium antagonist, TMB-8. The inhibition is reversed by either the readdition of calcium or the calcium ionophore A23187. The steroidogenic response to pregnenolone, whose mode of action does not require calcium, was not depressed by TMB-8. Corticotropin (ACTH)-induced steroidogenesis, which requires extracellular calcium, was markedly depressed by TMB-8, although enhanced cyclic AMP formation is only slightly depressed by this drug. Adrenal cortical microsomes possess an ATP-dependent 45calcium (45Ca2+) uptake system which responded to EGTA with a rapid efflux of 45Ca2+; EGTA-induced calcium efflux from this microsomal fraction was markedly reduced by a concentration of TMB-8 that blocked dibutyryl cyclic AMP-evoked steroidogenesis. TMB-8 produced a smaller but significant reduction of EGTA-facilitated 45Ca2+ efflux from a mitochondrial-enriched fraction. We interpret these results to mean that TMB-8 blocks the steroidogenic effect of dibutyryl cyclic AMP by interfering with the mobilization of a cellular pool of calcium that is probably localized to the endoplasmic reticulum. The physiological implications of these findings in relation to the complex interactions between calcium and cyclic AMP in adrenal steroidogenesis are discussed.  相似文献   

17.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

18.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

19.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

20.
The ability of noradrenaline (1 microM), phenylephrine (10 microM), and isoproterenol (1 microM) to stimulate glycogenolysis in euthyroid and hypothyroid perfused rat livers was investigated. It was found that hypothyroidism severely impaired alpha-receptor-mediated (noradrenaline, phenylephrine) glucose release. The initial Ca2+ efflux and K+ influx induced by these agonists in the euthyroid control group were almost totally absent in the hypothyroid group, while glycogen phosphorylase a activity in the hypothyroid rat livers was markedly lower than in the controls after infusing noradrenaline for 1 min. Diminished CA2+ efflux (and possibly diminished K+ influx) is likely to play a role in the large impairment in the action of noradrenaline or phenylephrine on glycogenolysis in the perfused hypothyroid rat liver. After prolonged stimulation (15 min) with noradrenaline, however, the phosphorylase a activity in the hypothyroid and euthyroid groups did not differ significantly. This was accompanied by Ca2+ influx in the hypothyroid livers, probably facilitated by a beta-adrenergic effect of noradrenaline in this group. Hypothyroidism potentiated the effect of isoproterenol on glycogenolysis. The glucose 6-phosphate content in the hypothyroid rat livers was markedly higher than in the euthyroid group after stimulation by noradrenaline or isoproterenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号