首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linkage map was constructed for bovine chromosome 6 (BTA6), using 399 single nucleotide polymorphisms (SNPs) detected primarily from PCR-resequencing. The efficiency of SNP detection was highly dependent on the source of sequence information chosen for primer design (BAC-end sequences, introns or promoters). The SNPs were used to build a linkage map comprising 104 cM on BTA6. The SNP order in the linkage map corresponded very well with radiation hybrid (RH) maps available for BTA6 as well as with expected positions in the human comparative map, but diverged significantly from the current assembly of the bovine genome (Btau_3.1). When performing linkage analysis with the marker order suggested from the Btau_3.1 we observed an expansion of the genetic map from 104 cM to 137 cM, strongly suggesting a reordering of scaffolds in the current version of the bovine genome assembly. The extent of LD on BTA6 was evaluated by calculating the average r 2 for SNP pairs separated by given distances. The decline of LD was rapid with distance, such that r 2 was 0.1 at 100 kb. Our results indicate that linkage mapping will be a valuable source of information for correcting errors in the current bovine assembly. These errors were sufficiently frequent to be of concern for the accuracy of mapping QTL with panels of SNPs whose positions are based on the current assembly.  相似文献   

2.
ABSTRACT: BACKGROUND: Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases. RESULTS: In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to that UMD3.1's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. CONCLUSION: We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.  相似文献   

3.
Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.  相似文献   

4.
Congenital multiple ocular defects (MOD) in Japanese black cattle is a hereditary ocular disorder with an autosomal recessive manner of inheritance, showing developmental defects of the lens, retina, and iris, persistent embryonic eye vascularization, and microphthalmia. In the present study, we mapped the locus responsible for the disorder by linkage analysis using 240 microsatellite markers covering the entire bovine genome and an inbred pedigree obtained from commercial herds. The linkage analysis demonstrated a significant linkage between the disorder locus and markers on the proximal region of bovine Chromosome (BTA) 18 with the maximum LOD score of 5.1. Homozygosity mapping using the haplotype of the linked markers further refined the critical region. The results revealed the localization of the locus responsible for MOD in an approximately 6.6-cM region of BTA18. Comparison of published linkage and radiation hybrid (RH) maps of BTA18 with its evolutionary ortholog, human Chromosome (HSA) 16, revealed several potential candidate genes for the disorder including the MAF and FOXC2 genes.  相似文献   

5.
The 5-AMP-activated protein kinase (AMPK) family is an ancient stress response system whose primary function is regulation of cellular ATP. Activation of AMPK, which is instigated by environmental and nutritional stresses, initiates energy-conserving measures that protect the cell by inhibition and phosphorylation of key enzymes in energy-consuming biochemical pathways. The seven genes that comprise the bovine AMPK family were mapped in cattle by using a radiation hybrid panel. The seven genes mapped to six different cattle chromosomes, each with a LOD score greater than 10.0. PRKAA1 mapped to BTA 20, PRKAA2 and PRKAB2 to BTA 3, PRKAB1 to BTA 17, PRKAG1 to BTA 5, PRKAG2 to BTA 4, and PRKAG3 to BTA 2. Five of the seven genes mapped to regions expected from human/cattle comparative maps. PRKAB2 and PRKAG3, however, have not been mapped in humans. We predict these genes to be located on HSA 1 and 2, respectively. Additionally, one synonymous and one non-synonymous single nucleotide polymorphism (SNP) were detected in PRKAG3 in Bos taurus cattle. In an effort to determine ancestral origins, various herds of mixed breed cattle as well as other ruminant species were characterized for sequence variation in this region of PRKAG3. Owing to the physiological importance of this gene family, we believe that its individual genes are candidate genes for conferring resistance to diseases in cattle.  相似文献   

6.
A comparative genome map is necessary for the implementation of comparative positional candidate gene cloning in cattle. We have developed a medium density comparative gene map of bovine chromosome 25 (BTA25). A radiation hybrid (RH) panel was used to map nine microsatellites and nine genes. Eight of the nine comparative loci were also mapped by FISH. These results were combined with data from published articles to create a comprehensive comparative map of BTA25 with human chromosomes 7 (HSA7) and 16 (HSA16). This map should facilitate the cloning of genes of interest on bovine chromosome 25.  相似文献   

7.
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization. For convenience and to avoid confusion we added for each species a three letter abbreviation prior to the chromosomal band location discussed in this paper: BTA, Cattle chromosome; HSA, Human chromosome; MMV, M. m. vaginalis chromosome; MRE, M. reevesi chromosome.  相似文献   

8.
Numerous QTL for a variety of phenotypic traits in dairy and beef cattle have been mapped on bovine chromosome 6 (BTA6). The complete and validated information on the molecular genome organization is an essential prerequisite for the conclusive identification of the causative sequence variation underlying the QTL. In our study we describe efforts to improve the genomic sequence map assembly of BTA6 by filling-in gaps and by suggesting sequence contig rearrangements. This is achieved by the generation and in silico mapping of BAC-end sequences (BESs) from clones containing sequences placed on our high-resolution radiation hybrid (RH) map of BTA6 onto the genome sequence map. Linking high-resolution RH mapping with in silico mapping of BESs on BTA6 enabled the detection of discrepancies in chromosomal assignments of genome sequence contigs and improved the resolution of non-conclusive assignments on the genome sequence assembly. Furthermore, 37% of BESs enabled chromosomal assignment of contigs previously unassigned. Anchoring of 66% of BESs onto HSA4 confirmed the synteny of the respective region of BTA6 including the known evolutionary breakpoints. The BESs will play an important role in the ongoing efforts to complete the sequence of the bovine genome and will also provide a source for the identification of new polymorphic sites in the genome sequence to resolve QTL-containing intervals.  相似文献   

9.
Bovine chromosome 14 (BTA14) has been widely explored for quantitative trait loci (QTL) and genes related to economically important traits in both dairy and beef cattle. We reviewed more than 40 investigations and anchored 126 QTL to the current genome assembly (Btau 4_0). Using this anchored QTL map, we observed that, in dairy cattle, the region spanning 0 – 10 Mb on BTA14 has the highest density QTL map with a total of 56 QTL, mainly for milk production traits. It is very likely that both somatic cell score (SCS) and clinical mastitis share some common QTL in two regions: 61.48 Mb - 73.84 Mb and 7.86 Mb – 39.55 Mb, respectively. As well, both ovulation rate and twinning rate might share a common QTL region from 34.16 Mb to 65.38 Mb. However, there are no common QTL locations in three pregnancy related phenotypes: non-return rate, pregnancy rate and daughter pregnancy rate. In beef cattle, the majority of QTL are located in a broad region of 15 Mb – 45 Mb on the chromosome. Functional genes, such as CRH, CYP11B1, DGAT1, FABP4 and TG, as potential candidates for some of these QTL, were also reviewed. Therefore, our review provides a standardized QTL map anchored within the current genome assembly, which would enhance the process of selecting positional and physiological candidate genes for many important traits in cattle.  相似文献   

10.
We identified ~13 000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat‐masked BAC‐end sequences from the cattle RPCI‐42 BAC library with whole‐genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel containing 186 DNA samples from 18 cattle breeds including 43 trios. Of 1039 SNPs confirmed as polymorphic in the panel, 998 had minor allele frequency ≥0.25 among unrelated individuals of at least one breed. When Btau 4.0 became available, 974 of these validated SNPs were assigned in silico to known cattle chromosomes, while 41 SNPs were mapped to unassigned sequence scaffolds, yielding one SNP every ~3 Mbp on average. Twenty‐four SNPs identified in Btau 1.0 were not mapped to Btau 4.0. Of the 1015 SNPs mapped to Btau 4.0, 959 SNPs had nucleotide bases identical in Btau 4.0 and Btau 1.0 contigs, whereas 56 bases were changed, resulting in the loss of the in silico SNP in Btau 4.0. Because these 1039 SNPs were all directly confirmed by genotyping on the multi‐breed panel, it is likely that the original polymorphisms were correctly identified. The 1039 validated SNPs identified in this study represent a new and useful resource for genome‐wide association studies and applications in animal breeding.  相似文献   

11.
Bovine chromosome 23 (BTA23) contains the bovine major histocompatibility complex (MHC) and is thus of particular interest because of the role of MHC genes in immunity. Previous studies have shown cattle MHC class II genes to be subdivided into two distinct subregions separated by a variable genetic distance of 15–30 cM. To elucidate the genetic events that resulted in the present organization of the class II and other MHC genes, a framework radiation hybrid (RH) map of BTA23 was developed by testing DNA samples from a 5000 rad whole genome RH panel. Twenty-six markers were screened with an average retention frequency of 0.27, ranging from 0.14 to 0.42. Total length of the chromosome was 220 cR5000, with 4.1 cR5000/cM when compared to linkage data. Gene orders for the markers common to both the RH framework map and the consensus framework linkage map are identical. Large centiray intervals,D23S23–D23S7, DYA–D23S24andCYP21–D23S31,were observed compared to linkage distances. These data may indicate a much larger physical distance or suppression of recombination in the interval separating the class II subregions and also within the class I region than previously estimated. Comparison of 13 Type I genes conserved between BTA23 and the human homolog HSA6p suggests the occurrence of an inversion encompassing the centromeric half of the bovine chromosome, thus explaining the large distance between the bovine class IIa and IIb clusters. These results exemplify the power of RH mapping in solving problems in comparative genomics and evolution. Furthermore, noncongruence of the genetic and physical RH map distances indicates that caution must be observed in using either resource alone in searching for candidate genes controlling traits of economic importance.  相似文献   

12.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

13.
Flight speed is a predictive indicator of cattle temperament and is associated with feed efficiency phenotypes. Genetic markers associated with both traits may assist with selection of calmer animals with improved economic value. A preliminary genome‐wide association study determined chromosomal regions on BTA9, and 17 were associated with flight speed. The genes quaking (QKI), glutamate receptor, ionotropic, AMPA 2 (GRIA2) and glycine receptor β (GLRB) were identified in these regions as potential functional candidates. Beef steers (= 1057) were genotyped with SNPs located within and flanking these genes. One SNP located near QKI and one near GRIA2 were nominally associated with flight speed ( 0.05) although neither was significant after Bonferroni correction. Several studies have shown a correlation between flight speed and feed intake or gain; therefore, we also analyzed SNPs on BTA6:38–39 Mb known to be associated with average daily gain (ADG) and average daily feed intake (ADFI) for association with flight speed. Several SNPs on BTA6 were associated with flight speed ( 0.005), and three were significant after Bonferroni correction. These results suggest that the genes tested are unlikely to contribute to flight speed variation for our cattle population, but SNPs on BTA6 associated with ADG and ADFI may influence temperament. Use of these markers to select for economically important feed efficiency phenotypes may produce cattle with more desirable temperaments.  相似文献   

14.
Screening of a bovine yeast artificial chromosome (YAC) library revealed two clones which contain most of the class II genes of the major histocompatibility complex (MHC) known to date. The YACs were mapped by fluorescence in situ hybridization (FISH) and characterized for the class II genes they contain. We found that the classic class II genes BoLA- DQA, -DQB, -DRA, and -DRB3 are located at BTA 23q21 and the non-classic class II genes DYA, DIB, LMP2, LMP7, TAP2, BoLA-DOB, -DMA, -DMB, and -DNA are located at BTA 23q12-->q13. These two different mapping locations confirm and extend previous findings of a gross physical distance between classic and non-classic MHC class II genes in cattle.  相似文献   

15.
Selection is the major force affecting local levels of genetic variation in species. The availability of dense marker maps offers new opportunities for a detailed understanding of genetic diversity distribution across the animal genome. Over the last 50 years, cattle breeds have been subjected to intense artificial selection. Consequently, regions controlling traits of economic importance are expected to exhibit selection signatures. The fixation index (Fst) is an estimate of population differentiation, based on genetic polymorphism data, and it is calculated using the relationship between inbreeding and heterozygosity. In the present study, locally weighted scatterplot smoothing (LOWESS) regression and a control chart approach were used to investigate selection signatures in two cattle breeds with different production aptitudes (dairy and beef). Fst was calculated for 42 514 SNP marker loci distributed across the genome in 749 Italian Brown and 364 Piedmontese bulls. The statistical significance of Fst values was assessed using a control chart. The LOWESS technique was efficient in removing noise from the raw data and was able to highlight selection signatures in chromosomes known to harbour genes affecting dairy and beef traits. Examples include the peaks detected for BTA2 in the region where the myostatin gene is located and for BTA6 in the region harbouring the ABCG2 locus. Moreover, several loci not previously reported in cattle studies were detected.  相似文献   

16.
The ``double-muscling' (mh) locus has been localized to an interval between the centromere and the microsatellite marker TGLA44 on bovine Chromosome (Chr) 2 (BTA2). We identified segments of conserved synteny that correspond to this region of BTA2 by assigning large genomic clones containing bovine homologs of seven genes from the long arm of human Chr 2 (HSA2q). Polymorphic markers developed from these clones integrated the physical and linkage maps of BTA2 from 2q12 to 2q44 and extended genetic coverage towards the centromere. This comparative analysis suggests the mh locus resides on HSA2q near both the protein C and collagen type III alpha-1 genes. Overall, our data reveal a complex rearrangement of gene order between BTA2q12-44 and HSA2q14-37 that underscores the need to establish boundaries of conserved synteny when applying comparative mapping information to identify genes or traits of interest. Received: 3 March 1997 / Accepted: 12 May 1997  相似文献   

17.
Reggiana is an autochthonous cattle breed reared mainly in the province of Reggio Emilia, located in the North of Italy. Reggiana cattle (originally a triple-purpose population largely diffused in the North of Italy) are characterised by a typical solid red coat colour. About 2500 cows of this breed are currently registered to its herd book. Reggiana is now considered a dual-purpose breed even if it is almost completely dedicated to the production of a mono-breed branded Protected Designation of Origin Parmigiano-Reggiano cheese, which is the main driver of the sustainable conservation of this local genetic resource. In this study, we provided the first overview of genomic footprints that characterise Reggiana and define the diversity of this local cattle breed. A total of 168 Reggiana sires (all bulls born over 35 years for which semen was available) and other 3321 sires from 3 cosmopolitan breeds (Brown, Holstein and Simmental) were genotyped with the Illumina BovineSNP50 panel. ADMIXTURE analysis suggested that Reggiana breed might have been influenced, at least in part, by the other three breeds included in this study. Selection signatures in the Reggiana genome were identified using three statistical approaches based on allele frequency differences among populations or on properties of haplotypes segregating in the populations (fixation index (FST); integrated haplotype score; cross-population extended haplotype homozygosity). We identified several regions under peculiar selection in the Reggiana breed, particularly on bovine chromosome (BTA) 6 in the KIT gene region, that is known to be involved in coat colour pattern distribution, and within the region of the LAP3, NCAPG and LCORL genes, that are associated with stature, conformation and carcass traits. Another already known region that includes the PLAG1 gene (BTA14), associated with conformation traits, showed a selection signature in the Reggiana cattle. On BTA18, a signal of selection included the MC1R gene that causes the red coat colour in cattle. Other selection sweeps were in regions, with high density of quantitative trait loci for milk production traits (on BTA20) and in several other large regions that might have contributed to shape and define the Reggiana genome (on BTA17 and BTA29). All these results, overall, indicate that the Reggiana genome might still contain several signs of its multipurpose and non-specialised utilisation, as already described for other local cattle populations, in addition to footprints derived by its ancestral origin and by its adaptation to the specialised Parmigiano-Reggiano cheese production system.  相似文献   

18.
Naturally, hornless cattle are called polled. Although the POLL locus could be assigned to a c. 1.36‐Mb interval in the centromeric region of BTA1, the underlying genetic basis for the polled trait is still unknown. Here, an association mapping design was set up to refine the candidate region of the polled trait for subsequent high‐throughput sequencing. The case group comprised 101 homozygous polled animals from nine divergent cattle breeds, the majority represented by Galloway, Angus, Fleckvieh and Holstein Friesian. Additionally, this group included some polled individuals of Blonde d’Aquitaine, Charolais, Hereford, Jersey and Limousin breeds. The control group comprised horned Belgian Blue, Fleckvieh, Holstein Friesian and Illyrian Bu?a cattle. A genome‐wide scan using 49 163 SNPs was performed, which revealed one shared homozygous haplotype block consisting of nine neighbouring SNPs in all polled animals. This segment defines a 381‐kb interval on BTA1 that we consider to be the most likely location of the POLL mutation. Our results further demonstrate that the polled‐associated haplotype is also frequent in horned animals included in this study, and thus the haplotype as such cannot be used for population‐wide genetic testing. The actual trait‐associated haplotype may be revealed by using higher‐density SNP arrays. For the final identification of the causal mutation, we suggest high‐throughput sequencing of the entire candidate region, because the identification of functional candidate genes is difficult owing to the lack of a comparable model.  相似文献   

19.
The locus responsible for the appearance of muscular hypertrophy (mh) in double muscled cattle breeds has recently been shown to encode a secreted growth factor designated myostatin (MSTN). This conclusion was based in part on the placement of MSTN in the interval to which mh had been mapped on bovine chromosome 2 (BTA2). During the mapping phase of the study, numerous yeast artificial chromosome (YAC) clones were isolated that contained genetic markers closely linked to mh. Other YACs and cosmids were identified that contained genes selected from human chromosome 2q (HSA2q), with the goal of defining the position of breakpoints in conserved synteny between the bovine and human comparative maps, thereby permitting accurate selection of positional candidate genes. An efficient subcloning procedure was developed to obtain microsatellites (ms) from YAC clones, to increase the number of informative meioses in herds segregating for mh. The same procedure was used to place the human orthologues of engrailed-1 (EN1), interleukin 1 beta (IL1B), and paired-box-containing 8 (PAX8) genes on the cattle map to further define the positions of breakpoints in conserved synteny and gene order. Twenty-three of 28 ms identified from YAC subclone libraries were informative in the mapping families. Seven mapped to the centromeric end of BTA2, which contains the mh locus, improving marker density and informativeness. The two MSTN and four EN1 gene-associated ms markers developed from YACs, map to positions 1·5 and 61·6 cm in the BTA2 linkage group, respectively. In addition, ms markers developed from cosmids containing either IL1B or PAX8, map to positions 56·6 and 56·9 cm in the BTA11 linkage group, respectively. These linkage data confirm the location and orientation of orthologous segments of HSA2q that were previously indistinguishable on the bovine map, and demonstrates the presence of microrearrangements of gene order (segments <10 cm ) and conserved synteny between the human and bovine genomes.  相似文献   

20.
The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second‐generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info . Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole‐genome sequencing and variation discovery in this important crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号