首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bud-site selection and cell polarity in budding yeast   总被引:1,自引:0,他引:1  
Polarized growth involves a hierarchy of events such as selection of the growth site, polarization of the cytoskeleton to the selected growth site, and transport of secretory vesicles containing components required for growth. The budding yeast Saccharomyces cerevisiae is an excellent model system for the study of polarized cell growth. A large number of proteins have been found to be involved in these processes, although their mechanisms of action are not yet well-understood. Recent discoveries have helped elucidate many of the processes involved in cell polarity and bud-site selection in yeast and have modified the traditional view of cellular structures involved in these processes. This review focuses on recent advances on the roles of cortical tags, GTPases and the cytoskeleton in the generation and maintenance of cell polarity in yeast.  相似文献   

2.
Budding and fission yeast serve as genetic model organisms for the study of the molecular mechanisms of cell polarity in single cells. Similar to other polarized eukaryotic cells, yeast cells have polarity programmes that regulate where they grow and divide. Here, we describe recent advances in defining the proteins that establish cell polarity and the numerous molecular interactions that may link these factors to the actin cytoskeleton. As many of these components are identified, a comprehensive understanding of complex pathways is beginning to emerge.  相似文献   

3.
In many organisms, ranging from yeast to humans, mitochondria fuse and divide to change their morphology in response to a multitude of signals. During the past decade, work using yeast and mammalian cells has identified much of the machinery required for fusion and division, including the dynamin-related GTPases--mitofusins (Fzo1p in yeast) and OPA1 (Mgm1p in yeast) for fusion and Drp1 (Dnm1p) for division. However, the mechanisms by which cells regulate these dynamic processes have remained largely unknown. Recent studies have uncovered regulatory mechanisms that control the activity, assembly, distribution and stability of the key components for mitochondrial fusion and division. In this review, we discuss how mitochondrial dynamics are controlled and how these events are coordinated with cell growth, mitosis, apoptosis and human diseases.  相似文献   

4.
The dynamic regulation of polarized cell growth allows cells to form structures of defined size and shape. We have studied the regulation of polarized growth using mating yeast as a model. Haploid yeast cells treated with high concentration of pheromone form successive mating projections that initiate and terminate growth with regular periodicity. The mechanisms that control the frequency of growth initiation and termination under these conditions are not well understood. We found that the polarisome components Spa2, Pea2, and Bni1 and the Cdc42 regulators Cdc24 and Bem3 control the timing and frequency of projection formation. Loss of polarisome components and mutation of Cdc24 decrease the frequency of projection formation, while loss of Bem3 increases the frequency of projection formation. We found that polarisome components and the cell fusion proteins Fus1 and Fus2 are important for the termination of projection growth. Our results define the first molecular regulators that control the timing of growth initiation and termination during eukaryotic cell differentiation.  相似文献   

5.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, suggesting that common molecular mechanisms may govern aspects of eukaryotic cell division. Recent advances in the assembly and placement of the contractile ring are discussed. In particular, major findings have been made in the characterization of myosins in cytokinesis, and in how the cell division site may be positioned by the nucleus.  相似文献   

6.
The signal systems of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, coupled to heterotrimeric G-proteins and sensitive to pheromones and alimentary molecules, are prototypes of hormonal signal systems of the higher vertebrate animals and are widely used in studies on molecular mechanisms of their functioning. This review summarizes and analyzes data on structural-functional organization of the first two components of these systems - receptors of the serpentine type and heterotrimeric G-proteins; mechanisms of functional coupling of receptors and G-proteins both between each other and to other signal proteins are discussed. It has been shown that at the early stages of evolution of signal systems, at the yeast level, various models of transduction of signals into the cell were tested; many of them differ essentially from the classic model of the three-component, G-protein-coupled signal system of the higher vertebrates.  相似文献   

7.
Polarized cell growth and division are fundamental to cellular differentiation and tissue formation in eukaryotes. Analysis of cell polarity in the budding yeast Saccharomyces cerevisiae has allowed the identification of many regulatory, secretory and cytoskeletal components involved in these processes, as well as the elucidation of various steps in these events. Many of these components and processes may be similar in other eukaryotes.  相似文献   

8.
《Autophagy》2013,9(2):263-265
Studies of the budding yeast Saccharomyces cerevisiae have provided many of the most important insights into the mechanisms of autophagy, which are common to all eukaryotes. However, investigation of yeast self-destruction pathways, including autophagy and programmed cell death, has been almost exclusively restricted to cells undergoing vegetative growth, leaving very little exploration of their functions during developmental transitions in the yeast life cycle. We have recently discovered that whole nuclei are subject to programmed destruction during yeast gametogenesis. Programmed nuclear destruction (PND) possesses characteristics of apoptosis in the form of DNA cleavage by endonuclease G, and involves bulk protein turnover through an unusual autophagic pathway involving lysis of the vacuole rather than delivery of components to it through macroautophagy. We thus illuminate an example of developmentally programmed cellular “self-eating” in yeast, which is associated with the rupture of a lytic organelle, reminiscent of programmed cell death mechanisms in plants and animals.  相似文献   

9.
Even relatively simple species have evolved mechanisms to organize individual organisms into communities, such that the fitness of the group is greater than the fitness of isolated individuals. Within the fungal kingdom, the ability of many yeast species to organize into communities is crucial for their growth and survival, and this property has important impacts both on the economy and on human health. Over the last few years, studies of Saccharomyces cerevisiae have revealed several fundamental properties of yeast communities. First, strain-to-strain variation in the structures of these groups is attributable in part to variability in the expression and functions of adhesin proteins. Second, the extracellular matrix surrounding these communities can protect them from environmental stress and may also be important in cell signaling. Finally, diffusible signals between cells contribute to community organization so that different regions of a community express different genes and adopt different cell fates. These findings provide an arena in which to view fundamental mechanisms by which contacts and signals between individual organisms allow them to assemble into functional communities.  相似文献   

10.
Kono K  Saeki Y  Yoshida S  Tanaka K  Pellman D 《Cell》2012,150(1):151-164
Cellular wound healing, enabling the repair of membrane damage, is ubiquitous in eukaryotes. One aspect of the wound healing response is the redirection of a polarized cytoskeleton and the secretory machinery to the damage site. Although there has been recent progress in identifying conserved proteins involved in wound healing, the mechanisms linking these components into a coherent response are not defined. Using laser damage in budding yeast, we demonstrate that local cell wall/membrane damage triggers the dispersal of proteins from the site of polarized growth, enabling their accumulation at the wound. We define a protein-kinase-C-dependent mechanism that mediates the destruction of the formin Bni1 and the exocyst component Sec3. This degradation is essential to prevent competition between the site of polarized growth and the wound. Mechanisms to overcome competition from a pre-existing polarized cytoskeleton may be a general feature of effective wound healing in polarized cells.  相似文献   

11.
The two key processes in growth polarisation are the generation of a confined region and the correct positioning of that region. Fission yeast has greatly contributed to the study of cell polarisation, particularly in the aspect of growth site positioning, which involves the interphase microtubule cytoskeleton. Here we review the mechanisms of growth polarity in vegetatively growing fission yeast cells. These seemingly simple cells show astonishingly complex growth polarity behaviour, including polarity switching and integrating multiple levels of control by the cell cycle machinery. We aim to extract and highlight the underlying concepts and discuss these in context of current understanding; showing how relevant proteins are networked to integrate the various machineries.  相似文献   

12.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

13.
14.
Mitochondrial involvement in yeast apoptosis is probably the most unifying feature in the field. Reports proposing a role for mitochondria in yeast apoptosis present evidence ranging from the simple observation of ROS accumulation in the cell to the identification of mitochondrial proteins mediating cell death. Although yeast is unarguably a simple model it reveals an elaborate regulation of the death process involving distinct proteins and most likely different pathways, depending on the insult, growth conditions and cell metabolism. This complexity may be due to the interplay between the death pathways and the major signalling routes in the cell, contributing to a whole integrated response. The elucidation of these pathways in yeast has been a valuable help in understanding the intricate mechanisms of cell death in higher eukaryotes, and of severe human diseases associated with mitochondria-dependent apoptosis. In addition, the absence of obvious orthologues of mammalian apoptotic regulators, namely of the Bcl-2 family, favours the use of yeast to assess the function of such proteins. In conclusion, yeast with its distinctive ability to survive without respiration-competent mitochondria is a powerful model to study the involvement of mitochondria and mitochondria interacting proteins in cell death.  相似文献   

15.
16.
The development of a complex multicellular organism requires a coordination of growth and cell division under the control of patterning mechanisms. Studies in yeast have pioneered our understanding of the relationship between growth and cell division. In recent years, many of the pathways that regulate growth in multicellular eukaryotes have been identified. This work has revealed interesting and unexpected relationships between mechanisms that regulate growth and the cell cycle machinery.  相似文献   

17.
Glucose Repression [1,2] Saccharomyces cerevisiae and other yeasts can growwell on different kinds of carbon sources. However,glucose and fructose are the best carbon sources for theirgrowth. When the medium contains glucose or fructose,the biosynthesis of enzyme catalyzing degradation of othercarbon sources will be greatly reduced or stopped. Thisphenomenon is called glucose repression. Although much progress has been made in this field,the exact mechanisms of glucose repression in yeastsa…  相似文献   

18.
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.  相似文献   

19.
MAP Kinase Pathways in the Yeast Saccharomyces cerevisiae   总被引:29,自引:0,他引:29       下载免费PDF全文
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.  相似文献   

20.
A key difference between yeast and metazoans is the need of the latter to regulate cell proliferation and growth to create organs (and organisms) of reproducible size and shape. Great progress has been made in understanding how growth, cell size and the cell cycle are controlled in metazoans. Recent work has shown that disruption of conserved components of the insulin and Tor kinase pathways can alter organ size, indicating that the normal functioning of these pathways is essential for organ size control. However, disruption of genes that regulate patterning and of genes that control cell adhesion and cell polarity has a much more dramatic effect on final organ size than does manipulation of the cell cycle or of basal growth control mechanisms. These data point to an 'organ-size checkpoint' that regulates cell division, cell growth and apoptosis. Recent data suggests that cell competition may play an important role in implementing the organ-size checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号