首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the carboxyl terminus in ClC chloride channel function   总被引:4,自引:0,他引:4  
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.  相似文献   

2.
Presenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain (Annaert, W.G., C. Esselens, V. Baert, C. Boeve, G. Snellings, P. Cupers, K. Craessaerts, and B. De Strooper. 2001. Neuron. 32:579-589). Here, we demonstrate that TLN is not a substrate for gamma-secretase cleavage, but displays a prolonged half-life in PS1(-/-) hippocampal neurons. TLN accumulates in intracellular structures bearing characteristics of autophagic vacuoles including the presence of Apg12p and LC3. Importantly, the TLN accumulations are suppressed by adenoviral expression of wild-type, FAD-linked and D257A mutant PS1, indicating that this phenotype is independent from gamma-secretase activity. Cathepsin D deficiency also results in the localization of TLN to autophagic vacuoles. TLN mediates the uptake of microbeads concomitant with actin and PIP2 recruitment, indicating a phagocytic origin of TLN accumulations. Absence of endosomal/lysosomal proteins suggests that the TLN-positive vacuoles fail to fuse with endosomes/lysosomes, preventing their acidification and further degradation. Collectively, PS1 deficiency affects in a gamma-secretase-independent fashion the turnover of TLN through autophagic vacuoles, most likely by an impaired capability to fuse with lysosomes.  相似文献   

3.
Ford DL  Monteiro MJ 《Biochemistry》2007,46(30):8827-8837
Ubiquilin was originally identified as a presenilin-interacting protein. We previously reported that ubiquilin interacts with both the loop and carboxyl terminus of presenilin proteins and that the ubiquitin-associated (UBA) domain of ubiquilin, which binds poly ubiquitin chains, is important for mediating this interaction. In the present study, we examined whether ubiquitination of presenilin-2 (PS2) is required for interaction with ubiquilin-1 by mutating lysine residues that may be targets for ubiquitination in the presenilin loop and carboxyl terminus regions. Mutation of two lysine residues in the PS2-loop region suggested that ubiquitination is not required for interaction with ubiquilin-1 and may, in fact, even negatively regulate the interaction. Similarly, we found that ubiquitination of the PS2 carboxyl terminus (PS2-C-terminus) is not required for interaction with ubiquilin-1, although our results suggest that it could play some role. Instead, we found that the mutation of either one of the two lysine residues in the carboxyl terminus of PS2 or the proline residues in the highly conserved PALP motif in this region results in destabilization of the mutant PS2 polypeptides because of increased degradation by the proteasome. Furthermore, by GST-pull-down assays we found that the mutant polypeptides were unable to bind ubiquilin, suggesting that loss of ubiquilin interaction leads to destabilization of presenilin polypeptides. Paradoxically, however, knockdown of ubiquilin expression by RNA interference did not alter the rate of turnover of PS2 proteins in cells. Instead, we found that PS2 synthesis was reduced, and PS2 fragment production was increased, suggesting that ubiquilin expression modulates biogenesis and endoproteolysis of presenilin proteins.  相似文献   

4.
Gamma-secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1 and, Pen-2 that is responsible for the intramembrane proteolysis of various type I transmembrane proteins, including amyloid beta-precursor protein and Notch. The direct labeling of PS polypeptides by transition-state analogue gamma-secretase inhibitors suggested that PS represents the catalytic center of gamma-secretase. Here we show that one of the major gamma-secretase inhibitors of dipeptidic type, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), targets the C-terminal fragment of PS, especially the transmembrane domain 7 or more C-terminal region, by designing and synthesizing DAP-BpB (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine-4-(4-(8-biotinamido)octylamino)benzoyl)benzyl)methylamide), a photoactivable DAPT derivative. We also found that DAP-BpB selectively binds to the high molecular weight gamma-secretase complex in an activity-dependent manner. Photolabeling of PS by DAP-BpB is completely blocked by DAPT or its structural relatives (e.g. Compound E) as well as by arylsulfonamides. In contrast, transition-state analogue inhibitor L-685,458 or alpha-helical peptidic inhibitor attenuated the photolabeling of PS1 only at higher concentrations. These data illustrate the DAPT binding site as a novel functional domain within the PS C-terminal fragment that is distinct from the catalytic site or the substrate binding site.  相似文献   

5.
The leukemia inhibitory factor (LIF) receptor comprises the low affinity binding chain gp190 and the high affinity converter gp130. The ectodomain of gp190 is among the most complex in the hematopoietin receptor family, because it contains two typical cytokine receptor homology domains separated by an immunoglobulin-like (Ig-like) domain. Human and murine gp190 proteins share 76% homology, but murine gp190 binds human LIF with a much higher affinity, a property attributed to the Ig-like domain. Using alanine-scanning mutagenesis of the Ig-like domain, we mapped a LIF binding site at its carboxyl terminus, mainly involving residue Phe-328. Mutation of selected residues into their orthologs in the murine receptor (Q251E and N321D) significantly increased the affinity for human LIF. Interestingly, these residues, although localized at both the amino and carboxyl terminus, make a spatially unique LIF binding site in a structural model of the Ig-like module. These results demonstrate definitively the role of the Ig-like domain in LIF binding and the potential to modulate receptor affinity in this family with very limited amino acid changes.  相似文献   

6.
Metabotropic glutamate receptor subtype 7 (mGluR7) is coupled to the inhibitory cyclic AMP cascade and is selectively activated by a glutamate analogue, L-2-amino-4-phosphonobutyrate. Among L-2-amino-4-phosphonobutyrate-sensitive mGluR subtypes, mGluR7 is highly concentrated at the presynaptic terminals and is thought to play an important role in modulation of glutamatergic synaptic transmission by presynaptic inhibition of glutamate release. To gain further insight into the intracellular signaling mechanisms of mGluR7, with the aid of glutathione S-transferase fusion affinity chromatography, we attempted to identify proteins that interact with the intracellular carboxyl terminus of mGluR7. Here, we report that calmodulin (CaM) directly binds to the carboxyl terminus of mGluR7 in a Ca(2+)-dependent manner. The CaM-binding domain is located immediately following the 7th transmembrane segment. We also show that the CaM-binding domain of mGluR7 is phosphorylated by protein kinase C (PKC). This phosphorylation is inhibited by the binding of Ca(2+)/CaM to the receptor. Conversely, the Ca(2+)/CaM binding is prevented by PKC phosphorylation. Collectively, these results suggest that mGluR7 serves to cross-link the cyclic AMP, Ca(2+), and PKC phosphorylation signal transduction cascades.  相似文献   

7.
Yeast ISC1 (Yer019w) encodes inositolphosphosphingolipid-phospholipase C and is activated by phosphatidylserine (PS) and cardiolipin (CL) (Sawai, H., Okamoto, Y., Lubert, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798). In this study, the structural requirements for anionic phospholipid-selective binding of ISC1 were determined using site-directed and deletion mutants. FLAG-tagged Isc1p was activated by PS, CL, and phosphatidylglycerol (PG) in a dose-dependent manner. Using lipid-protein overlay assays, Isc1p interacted specifically and directly with PS/CL/PG. Lipid-protein binding studies of a series of deletion mutants demonstrated that the second transmembrane domain (TMII) and the C terminus were required for PS binding. Moreover, the TMII and the C terminus domain were sufficient to impart PS binding to a heterologous protein, green fluorescence protein. In addition, mutations of positively charged amino acid residues at the C terminus of ISC1 reduced the activating effects of PS, suggesting involvement of these amino acids in interaction with PS/CL/PG and in the activation of the enzyme. Finally, when separate fragments containing the N terminus-TMI and TMII-C terminus were expressed heterologously, enzyme activity was reconstituted, demonstrating that the interaction of the N terminus and the C terminus is required for activity of Isc1p. These results raise the hypothesis that in the presence of PS/CL/PG, the catalytic domain in the N terminus of Isc1p is "pulled" to the membrane to interact with substrate. These studies provide unique insights into the properties of ISC1 and define a novel mechanism for activation of enzymes by lipids cofactors.  相似文献   

8.
Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.  相似文献   

9.
Carboxyl-terminal truncations of the melibiose carrier of Escherichia coli   总被引:1,自引:0,他引:1  
The melibiose carrier of Escherichia coli is predicted to possess a short NH2 terminus, 11 transmembrane segments joined by short hydrophilic regions, and a 40-residue hydrophilic carboxyl terminus of unknown function. This paper describes truncations of the carboxyl terminus at eight locations using site-specific mutagenesis to introduce stop codons. Measurement of sugar transport and cation-coupling characteristics indicate that the carboxyl tail plays no direct role in substrate recognition or energy transduction. Thirty-six amino acids could be removed from the hydrophilic carboxyl domain without the loss of sugar specificity, facilitated diffusion, uphill transport, H+-coupling or Na+-coupling characteristics. These results are consistent with the hypothesis that the sugar/cation binding site is formed by the interaction of the transmembrane helices 3, 4, 6, 9, and 10 and does not involve the carboxyl-terminal portion of the protein. When truncations were made within the hydrophobic domain of transmembrane helix 11 (truncations of 41 or more residues), the carrier was no longer found in the membrane. This suggests that the carboxyl terminus may be involved in the membrane insertion process, stabilization of the carrier within the membrane following insertion, or protection of the inserted carrier from proteolytic scavenging. A new plasmid that expresses the temperature-resistant isoform of the melibiose carrier under inducible control of a tac promoter, designated pKKMB, is also described.  相似文献   

10.
Factors V(a) and X(a) (FV(a) and FX(a), respectively) assemble on phosphatidylserine (PS)-containing platelet membranes to form the essential "prothrombinase" complex of blood coagulation. The C-terminal domain (C2) of FV(a) (residues 2037-2196 in human FV(a)) contains a soluble phosphatidylserine (C6PS) binding pocket flanked by a pair of tryptophan residues, Trp(2063) and Trp(2064). Mutating these tryptophans abolishes FV(a) membrane binding. To address both the roles of these tryptophans in C6PS or membrane binding and the role of the C2 domain lipid binding site in regulation of FV(a) cofactor activity, we expressed W(2063,2064)A mutants of the recombinant C2 domain (rFV(a2)-C2) and of a B domain-deleted factor V light isoform (rFV(a2)) in Hi-5 and COS cells, respectively. Intrinsic fluorescence showed that wild-type rFV(a2)-C2 binds to C6PS and to 20% PS/PC membranes with apparent K(d) values of 2.8 microM and 9 nM, respectively, while mutant rFV(a2)-C2 does not. Equilibrium dialysis confirmed that mutant rFV(a2)-C2 does not bind to C6PS. Mutant rFV(a2) binds to C6PS (K(d) approximately 37 microM) with an affinity comparable to that of wild-type rFV(a2) (K(d) approximately 20 microM), although it does not bind to PS/PC membranes to which wild-type rFV(a2) binds with native affinity (K(d) approximately 3 nM). Both wild-type and mutant rFV(a2) bind to active site-labeled FX(a) (DEGR-X(a)) in the presence of 400 microM C6PS with native affinity (K(d) approximately 3-4 nM) to produce a solution rFV(a2)-FX(a) complex of native activity. We conclude that (1) the C2 domain PS site provides all but approximately 1 kT of the free energy of FV(a) membrane binding, (2) tryptophans lining the C2 lipid binding pocket are critical to C6PS and membrane binding and insert into the bilayer interface during membrane binding, (3) occupancy of the C2 lipid binding pocket is not necessary for C6PS-induced formation of the FX(a)-FV(a) complex or its activity, but (4) another PS site on FV(a) does have a regulatory role.  相似文献   

11.
12.
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid and efficient endocytosis. Since functionally active CFTR is found in purified clathrin-coated vesicles isolated from both cultured epithelial cells and intact epithelial tissues, we investigated the molecular mechanisms whereby CFTR could enter such endocytic clathrin-coated vesicles. In vivo cross-linking and in vitro pull-down assays show that full-length CFTR binds to the endocytic adaptor complex AP-2. Fusion proteins containing the carboxyl terminus of CFTR (amino acids 1404-1480) were also able to bind AP-2 but did not bind the Golgi-specific adaptor complex AP-1. Substitution of an alanine residue for tyrosine at position 1424 significantly reduced the ability of AP-2 to bind the carboxyl terminus of CFTR; however, mutation to a phenylalanine residue (an amino acid found at position 1424 in dogfish CFTR) did not perturb AP-2 binding. Secondary structure predictions suggest that Tyr(1424) is present in a beta-turn conformation, a conformation disrupted by alanine but not phenylalanine. Together, these data suggest that the carboxyl terminus of CFTR contains a tyrosine-based internalization signal that interacts with the endocytic adaptor complex AP-2 to facilitate efficient entry of CFTR into clathrin-coated vesicles.  相似文献   

14.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

15.
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.  相似文献   

16.
Leech-derived antistasin is a potent anticoagulant and antimetastatic protein that binds sulfatide (Gal(3-SO4)beta 1-1Cer) and sulfated polysaccharides. In this study, the synthetic fragment [A103,106,108] antistasin 93-119, which corresponds to the carboxyl terminus, showed specific and saturable binding to sulfatide. Binding was competitively blocked by glycosaminoglycans (GAGs) in the order: dextran sulfate 5000 congruent to dextran sulfate 500,000 greater than heparin greater than dermatan sulfate much greater than chondroitin sulfates A and C. This rank order of inhibitory potency was identical to that observed with whole antistasin. We suggest that residues 93-119 of antistasin represent a critical domain for binding GAGs and sulfated glycolipids.  相似文献   

17.
C5L2 is a new cellular receptor found to interact with the human anaphylatoxins complement factor C5a and its C-terminal cleavage product C5a des Arg. The classical human C5a receptor (C5aR) preferentially binds C5a, with a 10-100-fold lower affinity for C5a des Arg. In contrast, C5L2 binds both ligands with nearly equal affinity. C5aR presents acidic and tyrosine residues in its N terminus that interact with the core of C5a while a hydrophobic pocket formed by the transmembrane helices interacts with residues in the C terminus of C5a. Here, we have investigated the molecular basis for the increased affinity of C5L2 for C5a des Arg. Rat and mouse C5L2 preferentially bound C5a des Arg, whereas rodent C5aR showed much higher affinity for intact C5a. Effective peptidic and non-peptidic ligands for the transmembrane hydrophobic pocket of C5aR were poor inhibitors of ligand binding to C5L2. An antibody raised against the N terminus of human C5L2 did not affect the binding of C5a to C5L2 but did inhibit C5a des Arg binding. A chimeric C5L2, containing the N terminus of C5aR, had little effect on the affinity for C5a des Arg. Mutation of acidic and tyrosine residues in the N terminus of human C5L2 revealed that 3 residues were critical for C5a des Arg binding but had little involvement in C5a binding. C5L2 thus appears to bind C5a and C5a des Arg by different mechanisms, and, unlike C5aR, C5L2 uses critical residues in its N-terminal domain for binding only to C5a des Arg.  相似文献   

18.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

19.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

20.
The γ-secretase protein complex executes the intramembrane proteolysis of amyloid precursor protein (APP), which releases Alzheimer disease β-amyloid peptide. In addition to APP, γ-secretase also cleaves several other type I membrane protein substrates including Notch1 and N-cadherin. γ-Secretase is made of four integral transmembrane protein subunits: presenilin (PS), nicastrin, APH1, and PEN2. Multiple lines of evidence indicate that a heteromer of PS-derived N- and C-terminal fragments functions as the catalytic subunit of γ-secretase. Only limited information is available on the domains within each subunit involved in the recognition and recruitment of diverse substrates and the transfer of substrates to the catalytic site. Here, we performed mutagenesis of two domains of PS1, namely the first luminal loop domain (LL1) and the second transmembrane domain (TM2), and analyzed PS1 endoproteolysis as well as the catalytic activities of PS1 toward APP, Notch, and N-cadherin. Our results show that distinct residues within LL1 and TM2 domains as well as the length of the LL1 domain are critical for PS1 endoproteolysis, but not for PS1 complex formation with nicastrin, APH1, and PEN2. Furthermore, our experimental PS1 mutants formed γ-secretase complexes with distinct catalytic properties toward the three substrates examined in this study; however, the mutations did not affect PS1 interaction with the substrates. We conclude that the N-terminal LL1 and TM2 domains are critical for PS1 endoproteolysis and the coordination between the putative substrate-docking site and the catalytic core of the γ-secretase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号