首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multispin magnetization transfer, or spin diffusion, is a significant source of error in NOESY-derived distance measurements for the determination of nucleic acid solution structures. The BD-NOESY and CBD-NOESY experiments, which allow the measurement of interproton distances with greatly reduced contributions from spin diffusion, have been adapted to structural analysis in RNA oligonucleotides. The techniques are applied to a lead-dependent ribozyme (LZ2). We demonstrate the measurement of both aromatic proton–aromatic proton NOEs free of spin diffusion involving the intervening ribose moieties and aromatic proton–ribose proton NOEs free of the efficient cross-relaxation within the ribose ring. In LZ2, the accuracy and precision of the resulting distances are significantly improved. We also find that, by allowing the use of longer mixing times with greater sensitivity, the experimental attenuation of spin diffusion in RNA increases the distance range of interactions that can be analyzed. This effect permits measurement of important long-range distances in LZ2 that are not accessible with standard techniques. Thus, these techniques allow the simultaneous optimization of the number, accuracy, and precision of distance constraints used for RNA structure determinations.  相似文献   

2.
Prospects for NMR of large proteins   总被引:2,自引:0,他引:2  
Summary During the last decade, solution structures of many small proteins have been solved by NMR. The size of proteins that are being analyzed by NMR seems to increase steadily. Protein structures up to 18 kD have been solved sofar, and spectra of proteins up to 30 kD have been assigned. Thus, NMR emerges as an attractive technique, in particular for structural studies of proteins that cannot by crystallized. However, the application of the technology is limited by relaxation properties of the proteins. If relaxation would only be determined by Stokes-Einstein-type rotational diffusion, the effects of the molecular size on relaxation properties of proteins and thus on the performance of multi-dimensional multiple-resonance experiments could readily be estimated. From this perspective, solving two- or three-fold larger structures seems possible. However, most larger proteins exhibit serious line broadening due to aggregation or other still unknown effects. Sample conditioning to minimize these effects is presently the challenge in the work with large proteins.  相似文献   

3.
Summary A constant-time version of the homonuclear NOESY experiment (CT-NOESY) is described. The experiment yields simplified protein spectra, in which cross peaks arising from protons with zero or small couplings are differentiated from other cross peaks, thus partially overcoming the problem of signal overlap. In addition, the CT-NOESY spectrum provides information on the magnitude of3JNH- and3J coupling' constants, and is thus useful to determine torsion angle constraints and to perform stereospecific assignments of CHH protons in the case of3J constants.  相似文献   

4.
We have investigated the acid-unfolded state of acyl-coenzyme A binding protein (ACBP) using 15N laboratory frame nuclear magnetic resonance (NMR) relaxation experiments at three magnetic field strengths. The data have been analyzed using standard model-free fitting and models involving distribution of correlation times. In particular, a model-independent method of analysis that does not assume any analytical form for the correlation time distribution is proposed. This method explains correlations between model-free parameters and the analytical distribution parameters found by other authors. The analysis also shows that the relaxation data are consistent with and complementary to information obtained from other parameters, especially secondary chemical shifts and residual dipolar couplings, and strengthens the conclusions of previous observations that three out of the four regions that form helices in the native structure appear to contain residual secondary structure also in the acid-denatured state.  相似文献   

5.
Heisenberg spin exchange rates and dipole-dipole spin lattice relaxation rates for deuterated 14N- and 15N-spin labels bound selectively to the histidine His15 and to the lysines Lys13, 96, 97 of the lysozyme molecule have been determined with the aid of electron spin resonance spectroscopy. The results can be interpreted in terms of a two dimensional translational diffusion of the nitroxide tips of the spin labels along the protein surface within restricted surface areas. The spin labels are regarded as models for long amino acid side chains and as probes for the dynamics of protein and water in the vicinity of the protein surface. The translational diffusion coefficient DPII is reduced by a factor of between six and thirty compared to the value of D found for the spin labels in bulk water, its value for T = 295 K is given by (1.3±0.6)·10–10m2s–1 D (2.4±0.3) 10–11 m2s–1. Offprint requests to: H.-J. Steinhoff  相似文献   

6.
Summary A variant of two-dimensional nuclear Overhauser effect spectroscopy (NOESY) is described that yields information about cross-relaxation rates between pairs of spins, while the migration of magnetization through several consecutive steps (spin diffusion via neighboring spins) is largely suppressed. This can be achieved by inserting a doubly-selective inversion pulse in a conventional NOESY sequence.  相似文献   

7.
The analysis of the rotational diffusion of a molecule using homonuclear NMR is investigated. The homonuclear longitudinal and transverse cross-relaxation rates, which can be quantitatively measured using off-Resonance Rotating frame nuclear Overhauser Effect Spectroscopy (ROESY), are used to build a distribution, which exhibits a solid-state-like pattern characteristic of the diffusion tensor. The distributions of the antimicrobial peptide ranalexin in water and in 30% of trifluoracetic acid (TFE) are compared, and the peptide rotational diffusion is shown to be more isotropic in water than in 30% TFE. This difference is further supported by the analysis of NMR ranalexin conformers in 30% TFE, and by the analysis of a molecular dynamics simulation of peptide in water.  相似文献   

8.
Elucidation of high-resolution protein structures by NMR spectroscopy requires a large number of distance constraints that are derived from nuclear Overhauser effects between protons (NOEs). Due to the high level of spectral overlap encountered in 2D NMR spectra of proteins, the measurement of high quality distance constraints requires higher dimensional NMR experiments. Although four-dimensional Fourier transform (FT) NMR experiments can provide the necessary kind of spectral information, the associated measurement times are often prohibitively long. Covariance NMR spectroscopy yields 2D spectra that exhibit along the indirect frequency dimension the same high resolution as along the direct dimension using minimal measurement time. The generalization of covariance NMR to 4D NMR spectroscopy presented here exploits the inherent symmetry of certain 4D NMR experiments and utilizes the trace metric between donor planes for the construction of a high-resolution spectral covariance matrix. The approach is demonstrated for a 4D (13)C-edited NOESY experiment of ubiquitin. The 4D covariance spectrum narrows the line-widths of peaks strongly broadened in the FT spectrum due to the necessarily short number of increments collected, and it resolves otherwise overlapped cross peaks allowing for an increase in the number of NOE assignments to be made from a given dataset. At the same time there is no significant decrease in the positive predictive value of observing a peak as compared to the corresponding 4D Fourier transform spectrum. These properties make the 4D covariance method a potentially valuable tool for the structure determination of larger proteins and for high-throughput applications in structural biology.  相似文献   

9.
Summary The Lipari-Szabo dynamical formalism is extended by setting the time constants of the Lorentzian terms to and . This analysis is compared to the earlier proposed three-parameter extended model free formalism with regard to the range of equivalence and the advantages of the simplified two-parameter (S inff sup2 ,S infH sup2 ) and (S inff sup2 ,S infN sup2 ) representations. Spectral density components are calculated and compared to those obtained from the spectral density analysis formalism. Protein relaxation data, commonly analyzed in terms of the two-parameter representation, may correspond to a dynamically heterogeneous behaviour that is more appropriately represented in terms of a fast limit order parameter and a second, lower frequency order parameter.  相似文献   

10.
Summary Food microbiologists have long known that suppression of the activity of water,a w, can retard microbial growth in food systems. Traditionally,a w, suppression has been achieved by addition of salts or humectants to foods. To limit the amount of preservatives added to food products, studies were initiated to assess the feasibility of using proteins to suppressa w to a practical value for retarding bacterial growth and to determine the optimum environmental condition for maximizing this effect for milk proteins. New expressions were developed relating observed longitudinal and transverse NMR relaxation rates, in the absence of cross-relaxation, to protein hydration , to the protein activity coefficient, p, and to the correlation time of the bound water, c. From p, the second virial coefficient of the protein,B o, can be found. By use of andB o,a w could then be directly evaluated at any protein concentration. Resulting expressions were tested by2H-NMR relaxation measurements made as a function of protein concentration, for: -lactoglobulin A (the major whey protein) under nonassociating (pH 6.0) and associating (pH 4.65) conditions; and for casein (the major milk protein) in the micellar (with added Ca2+) and submicellar (without Ca2+) forms. Values ofa w calculated from these2H-NMR data show that casein, at all the concentrations and temperatures examined, suppressesa w more than does -lactoglobulin A because of a largerB o. In turn, micellar casein suppressesa w to a larger extent than does submicellar casein because of a larger . Extrapolation ofa w at 4°C to a concentration ten times that in normal milk yields a value, ofa w of less than 0.95, at whichSalmonella and some strains ofClostridium botulinum no longer grow. These results are in agreement with what is known about storageability of condensed milk. Generalizations regarding the types of proteins and cosolutes to be used for suppressinga w will be discussed. Structural information on these proteins calculated from c will also be presented.  相似文献   

11.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

12.
HYDRONMR is an implementation of state of the art hydrodynamic modeling to calculate the spectral density functions for NH or C-H vectors in a rigid protein structure starting from an atomic level representation. Thus HYDRONMR can be used to predict NMR relaxation times from a rigid model and to compare them with the experimental results. HYDRONMR contains a single adjustable parameter, the atomic element radius. A protocol to determine the value that gives the best agreement between calculated and experimental T1/T2values is described. For most proteins, the value of the atomic element radius ranges between 2.8 Å and 3.8 Å with a distribution centered at 3.3 Å. Deviations from the usual range towards larger values are associated to aggregation in several proteins. Deviations to lower values may be related to large-scale motions or inappropriate model structures.If the average structure is correct, deviations between experimental T1/T2values and those calculated with HYDRONMR can be used to distinguish residues affected by anisotropic motion from those that are involved in chemical exchange.  相似文献   

13.
A simple model is used to illustrate the relationship between the dynamics measured by NMR relaxation methods and the local residual entropy of proteins. The expected local dynamic behavior of well-packed extended amino acid side chains are described by employing a one-dimensional vibrator that encapsulates both the spatial and temporal character of the motion. This model is then related to entropy and to the generalized order parameter of the popular "model-free" treatment often used in the analysis of NMR relaxation data. Simulations indicate that order parameters observed for the methyl symmetry axes in, for example, human ubiquitin correspond to significant local entropies. These observations have obvious significance for the issue of the physical basis of protein structure, dynamics, and stability.  相似文献   

14.
Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.  相似文献   

15.
Nuclear magnetic resonance (NMR) spectroscopy of lipid A is limited by rapid transversal relaxation and subsequent line broadening caused by the tendency of these glycolipids to form aggregates in all solvents. To examine the influence of solvents on NMR spectra, hexa-acyl lipid A from Escherichia coli F515 was investigated. Line widths at half height, longitudinal relaxation times, and transversal relaxation times were measured in different solvents, lipid A concentrations, and temperatures. Chloroform-d, dioxane-d(8), and pyridine-d(5) each mixed with 25% methanol-d(4) as well as sole DMSO-d(6) and 0.1M triethylamine-d(15) (TEA-d(15)) in D(2)O caused good spectral resolutions and allowed structure analysis. ROESY and HMBC spectra gave an insight into the influence of transversal relaxation times on spectral quality in two-dimensional spectra. Solvent depending differences of interglycosidic NOEs indicated dissimilarities of the conformations in the interglycosidic linkage and allowed conclusions about the lipid A solution state.  相似文献   

16.
A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow fordirect interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a largeproportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOEdistances are bounded by 4% and 10%, based on a comparison to the corresponding X-raydistances. An independent fluctuation model is proposed for prediction of the dynamicalcorrections to 1H-1H cross-relaxation rates, based solely on experimental structural andheteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclearorder parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1– S2 = 3/4 sin2 2 ). The combination of spin-diffusion-suppressed NOEdata and analysis of dynamical corrections to 1H-1H cross-relaxation rates based onheteronuclear relaxation data has allowed for a detailed interpretation of various discrepanciesbetween the reported solution and crystal structures.  相似文献   

17.
Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R1 and R1 measurements on the C1, C3, and C4 carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R1/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R1/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)–1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.  相似文献   

18.
19.
20.
Summary Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4°C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.[/p]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号