首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王桂玲  黄东阳 《遗传学报》2004,31(4):403-410
从牛的肝脏中快速抽提总RNA,根据GenBank已发表NADP(H)-依赖的视黄醇脱氢酶基因(NRDR)的cDNA序列,设计并合成特异引物,利用cDNA末端快速扩增(RACE)方法和反转录-聚合酶链式反应(RT-PCR),得到牛肝内的NRDR cDNA的全长序列。经测序证实,牛肝NRDR的全长cDNA序列为1266bp,其开放读码框架在24~806bp,编码260个氨基酸(GenBank登录号:AF487454)。根据NRDR基因推导出的氨基酸序列与人、鼠、兔有高度同源性,并含有SDR超家族成员的两个高度保守的模序,在其C-端含有过氧化物酶体的靶向序列为SHL。结果表明,牛的NRDR应属于过氧化物酶体内SDR超家族成员并在维甲酸合成的限速步骤起作用的酶,也为维甲酸合成的传统通路提供一个补充。  相似文献   

2.
3.
A polypeptide containing the carboxyl-terminal fragment of human peroxisomal enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme was synthesized in vitro from its cDNA clone. This expression polypeptide was transported into purified rat liver peroxisomes. When the expression polypeptide was incubated with postnuclear supernatant fractions of human hepatoma cells and analyzed by Nycodenz gradient SDS-PAGE and fluorography, it was imported specifically into peroxisomes as indicated by its resistance to proteinase K degradation. A deletion of the last nine amino acid residues at the carboxyl-terminus of this polypeptide prevents its peroxisomal import. A tripeptide sequence, SKL, located at the carboxyl-terminus of human bifunctional enzyme appears to be the targeting signal for the peroxisomal importation of bifunctional enzyme in human cells.  相似文献   

4.
5.
6.
We report here the identification and characterization of human and mouse PECI, a novel gene that encodes a monofunctional peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase. Human and mouse PECI were identified on the basis of their sequence similarity to Eci1p, a recently characterized peroxisomal Delta(3),Delta(2)-enoyl-CoA isomerase from the yeast Saccharomyces cerevisiae. Cloning and sequencing of the human PECI cDNA revealed the presence of a 1077-base pair open reading frame predicted to encode a 359-amino acid protein with a mass of 39.6 kDa. The corresponding mouse cDNA contains a 1074-base pair open reading frame that encodes a 358-amino acid-long protein with a deduced mass of 39.4 kDa. Northern blot analysis demonstrated human PECI mRNA is expressed in all tissues. A bacterially expressed form of human PECI catalyzed the isomerization of 3-cis-octenoyl-CoA to 2-trans-octenoyl-CoA with a specific activity of 27 units/mg of protein. The human and mouse PECI proteins contain type-1 peroxisomal targeting signals, and human PECI was localized to peroxisomes by both subcellular fractionation and immunofluorescence microscopy techniques. The potential roles for this monofunctional Delta(3),Delta(2)-enoyl-CoA isomerase in peroxisomal metabolism are discussed.  相似文献   

7.
A clone harbouring the genomic DNA sequence for the peroxisomal catalase of an n-alkane-utilizable yeast, Candida tropicalis, has been isolated by the hybrid-selection method and confirmed with a probe of catalase partial cDNA. Nucleotide sequence analysis of the cloned DNA disclosed that the gene fragment coding for catalase had a length of 1455 base pairs (corresponding to 485 amino acids; m = 54937 Da), and that the size of this enzyme was the smallest among all catalases reported hitherto. No intervening sequence was found in this coding region and some portions coincided with the amino acid sequences obtained from the analysis of the purified catalase. The comparison with three peroxisomal catalases from rat liver, bovine liver and human kidney, and one cytosolic catalase from Saccharomyces cerevisiae has revealed that catalase from C. tropicalis was more homologous to the peroxisomal enzymes than to the cytosolic one. C. tropicalis used the codons of the high-expression type. Amino acid residues were all conserved at the active and heme-binding sites. In the N and C-terminal regions there was no characteristic signal sequence or consensus sequence. However, a noticeable region, which can be discriminated between peroxisomal and cytosolic catalases, was proposed.  相似文献   

8.
9.
10.
Thiolase is part of the fatty acid oxidation machinery which in plants is located within glyoxysomes or peroxisomes. In cucumber cotyledons, proteolytic modification of thiolase takes place during the transfer of the cytosolic precursor into glyoxysomes prior to the intraorganellar assembly of the mature enzyme. This was shown by size comparison of the in vitro synthesized precursor and the 45 kDa subunit of the homodimeric glyoxysomal form. We isolated a full-length cDNA clone encoding the 48 539 Da precursor of thiolase. This plant protein displayed 40% and 47% identity with the precursor of fungal peroxisomal thiolase and human peroxisomal thiolase, respectively. Compared to bacterial thiolases, the precursor of the plant enzyme was distinguished by an N-terminal extension of 34 amino acid residues. This putative targeting sequence of cucumber thiolase shows similarities with the cleavable presequences of rat peroxisomal thiolase and plant peroxisomal malate dehydrogenase.  相似文献   

11.
A 24 kDa protein from rat liver peroxisomal membrane was isolated and subjected to Edman degradation. Using the N-terminal sequence of this polypeptide we have identified several rat and human expressed sequence tags in the GenBank Database. The complete sequence of a human cDNA clone was determined. The open reading frame encodes an extremely basic protein 212 amino acid residues long. A high similarity between this mammalian protein and hypothetical proteins from Caenorhabditis elegans and Neurospora crassa was found. Hydropathy analysis reveals the existence of two putative membrane-spanning domains in conserved regions of the three homologous proteins.  相似文献   

12.
13.
In this study we addressed the targeting requirements of peroxisomal ABC transporters, in particular the human adrenoleukodystrophy protein. This membrane protein is defective or missing in X-linked adrenoleukodystrophy, a neurodegenerative disorder predominantly presenting in childhood. Using adrenoleukodystrophy protein deletion constructs and green fluorescent protein fusion constructs we identified the amino acid regions 1-110 and 67-164 to be sufficient for peroxisomal targeting. However, the minimal region shared by these constructs (amino acids 67-110) is not sufficient for peroxisomal targeting by itself. Additionally, the NH2-terminal 66 amino acids enhance targeting efficiency. Green fluorescent protein-labeled fragments of human peroxisomal membrane protein 69 and Saccharomyces cerevisiae Pxa1 corresponding to the amino acid 67-164 adrenoleukodystrophy protein region were also directed to the mammalian peroxisome. The required region contains a 14-amino-acid motif (71-84) conserved between the adrenoleukodystrophy protein and human peroxisomal membrane protein 69 and yeast Pxa1. Omission or truncation of this motif in the adrenoleukodystrophy protein abolished peroxisomal targeting. The single amino acid substitution L78F resulted in a significant reduction of targeting efficiency. The in-frame deletion of three amino acids (del78-80LLR) within the proposed targeting motif in two patients suffering from X-linked adrenoleukodystrophy resulted in the mislocalization of a green fluorescent protein fusion protein to nucleus, cytosol and mitochondria. Our data define the targeting region of human adrenoleukodystrophy protein containing a highly conserved 14-amino-acid motif.  相似文献   

14.
The amino acid sequence of human hepatic peroxisomal L-alanine: glyoxylate aminotransferase 1 (AGTI) deduced from cDNA shows 78% sequence identity with that of rat mitochondrial AGTI, but lacks the N-terminal 22 amino acids (the putative mitochondrial targeting signal). In humans this signal appears to have been deleted during evolution by a point mutation of the initiation codon ATG to ATA. These data suggest that the targeting defect in primary hyperoxaluria type 1, in which AGT1 is diverted from the peroxisomes to the mitochondria, could be due to a point mutation that reintroduces all or part of the mitochondrial signal sequence.  相似文献   

15.
A cDNA encoding 35-kDa peroxisome assembly factor 1 (PAF-1), a peroxisomal integral membrane protein, was cloned from Chinese hamster ovary (CHO) cells and sequenced. The CHO PAF-1 comprised 304 amino acids, one residue shorter than rat or human PAF-1, and showed high homology to rat and human PAF-1: 90 and 86% at the nucleotide sequence level and 92 and 90% in amino acid sequence, respectively. PAF-1 from these three species contains a conserved cysteine-rich sequence at the C-terminal region which is exactly the same as that of a novel cysteine-rich RING finger motif family. PAF-1 cDNA from a peroxisome-deficient CHO cell mutant, Z65 (T. Tsukamoto, S. Yokota, and Y. Fujiki, J. Cell Biol. 110:651-660, 1990), contained a nonsense mutation at the codon for Trp-114, resulting in premature termination. Truncation in PAF-1 of either 19 amino acids from the N terminus or 92 residues from the C terminus maintained the peroxisome assembly-restoring activity when tested in both the Z65 mutant and the fibroblasts from a Zellweger patient. In contrast, deletion of 27 or 102 residues from the N or C terminus eliminated the activity. PAF-1 is encoded by free polysomal RNA, consistent with a general rule for biogenesis of peroxisomal proteins, including membrane polypeptides, implying the posttranslational transport and integration of PAF-1 into peroxisomal membrane.  相似文献   

16.
To elucidate structural relationships between the mitochondrial and peroxisomal isozymes of beta-oxidation systems, cDNA of the mitochondrial enoyl-CoA hydratase was cloned and sequenced. The 1454-bp cDNA sequence contained a 870 bp of open reading frame, encoding a polypeptide of 290 amino acid residues. When compared with the amino-terminal sequence of the mature enzyme, the predicted sequence contained a 29-residue presequence at the amino terminus. This presequence had characteristics typical of a mitochondrial signal peptide. The primary structure of this enzyme showed significant similarity with the amino-terminal portion of sequence of the peroxisomal enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. The carboxy-terminal part of the latter enzyme has sequence similarity with mitochondrial 3-hydroxyacyl-CoA dehydrogenase [Ishii, N., Hijikata, M., Osumi, T. & Hashimoto, T. (1987) J. Biol. Chem. 262, 8144-8150]. These findings suggest that the peroxisomal bifunctional enzyme has the hydratase and dehydrogenase functions on the amino- and carboxy-terminal sides, respectively. The mitochondrial beta-oxidation enzymes and the peroxisomal bifunctional enzyme may have common evolutionary origins.  相似文献   

17.
A castor bean (Ricinus communis cv. Hale) cDNA encoding catalase was cloned and sequenced. The cDNA encoding the carboxy-terminal domain of catalase was compared to the corresponding sequences of six other plant catalases. The deduced amino acid sequences were compared according to the chemical attributes of each amino acid within each carboxy-terminal domain. A tripeptide sequence having the chemical attributes of the peroxisomal targeting sequence [Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. & Subramani, S. (1989) J. Cell Biol. 108, 1657-1664] was common to all the glyoxysomal/peroxisomal plant catalases. This sequence motif was located six amino acids from the carboxy terminus of each of the plant catalases. An identical motif was also found within the carboxy-terminal domain of three mammalian catalases previously sequenced. We hypothesize that these motifs are at least part of the targeting mechanism for catalase entry into plant glyoxysomes/peroxisomes.  相似文献   

18.
The cDNA sequence of human liver 70 kDa peroxisomal membrane protein (hPMP70) was determined. The nucleotide sequence contains an open reading frame of 1977 base pairs and encodes an amino acid sequence of 659 residues which exhibits 95.0% identity with that of rat liver PMP70. hPMP70 shares close similarity to the members of a superfamily of ATP-binding transport proteins.  相似文献   

19.
Phytanoyl-CoA hydroxylase (PhyH) catalyzes the conversion of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA, which is the first step in the phytanic acid alpha-oxidation pathway. Recently, several studies have shown that in humans, phytanic acid alpha-oxidation is localized in peroxisomes. In rat, however, the alpha-oxidation pathway has been reported to be mitochondrial. In order to clarify this differential subcellular distribution, we have studied the rat PhyH protein. We have purified PhyH from rat liver to apparent homogeneity as judged by SDS-PAGE. Sequence analysis of two PhyH peptide fragments allowed cloning of the rat PHYH cDNA encoding a 38. 6 kDa protein. The deduced amino acid sequence revealed strong homology to human PhyH including the presence of a peroxisome targeting signal type 2 (PTS2). Heterologous expression of rat PHYH in Saccharomyces cerevisiae yielded a 38.6 kDa protein whereas the PhyH purified from rat liver had a molecular mass of 35 kDa. This indicates that PhyH is probably processed in rat by proteolytic removal of a leader sequence containing the PTS2. This type of processing has been reported in several other peroxisomal proteins that contain a PTS2. Subcellular localization studies using equilibrium density centrifugation showed that PhyH is indeed a peroxisomal protein in rat. The finding that PhyH is peroxisomal in both rat and humans provides strong evidence against the concept of a differential subcellular localization of phytanic acid alpha-oxidation in rat and human.  相似文献   

20.
DNA sequence complementary to the mRNA for rabbit interleukin-1 precursor (preIL-1) has been cloned from the cDNA library constructed using partially purified poly(A)+RNA from induced rabbit alveolar macrophages by mRNA hybridization-translation assay. By using this cDNA as a probe, human IL-1 cDNA was isolated from the cDNA library prepared using poly(A)+RNA from induced HL-60 cells, a human monocyte-like cell line. The amino acid sequences of the human and rabbit preIL-1 deduced from the cDNA sequences reveal their primary structures which consists of 271 and 267 amino acid residues, respectively. The amino acid sequence is 64% conserved between human and rabbit. The difference in number of amino acid residues results from the carboxy-terminal extention of 4 amino acid residues in human preIL-1. Expression of the cloned human cDNA in E. coli yielded biologically active IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号