首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the permeability of the blood-brain barrier (BBB) and blood-cerebrospinal fluid (blood-CSF) barrier in rabbits were assessed by using a sensitive double isotope technique at different times after the induction of acute immune complex disease (AICD). Induction of AICD was done with a single large dose of bovine serum albumin, whereas controls received only saline. Animals were sacrificed 6, 9, 12, 15, and 18 days after induction. Extravasation of protein was measured by injecting rabbits i.v. with 131I-rabbit serum albumin (RSA) 24 hr before sacrifice. In order to correct for intravascular blood volume, 125I-RSA was injected 5 min before sacrifice. Extravascular blood equivalents (EVBE), a measure of barrier permeability, were elevated in the CSF of rabbits sacrificed on days 12 and 15. None of the brain regions from any of the animal groups showed any changes or significant differences from controls in EVBE values on these days. These results indicate that there was an increase in the permeability of the blood-CSF barrier to radiolabeled albumin but not in the BBB proper during the time that CSF IgG levels were elevated in AICD. The potential significance of these findings for the mechanisms mediating central nervous system involvement in systemic lupus erythematosus is discussed.  相似文献   

2.
We investigated the effects of exposure to a 1439 MHz TDMA (Time Division Multiple Access) field, as used in cellular phones, on the permeability of the blood-brain barrier (BBB), on the morphological changes of the brain, and on body-mass fluctuations. Male Sprague-Dawley (SD) rats were divided into three groups of eight rats each. The rats in the EM(+) group, which had their heads arrayed in a circle near the central antenna of an exposure system, were exposed to a 1439 MHz field for one hour a day. The rats in EM(-) group were also in the exposure system, however, without high-frequency electromagnetic wave (HF-EMW) exposure. The animals in the control group were neither placed in the system nor exposed to HF-EMWs. The exposure period was two or four weeks. The energy dose rate peaked at 2 W/kg in the brain; the average over the whole body was 0.25 W/kg. The changes in the permeability of BBB were investigated by Evans blue injection method and by immunostaining of serum albumin. HF-EMWs had no effect on the permeability of BBB. The morphological changes in the cerebellum were investigated by assessing the degeneration of Purkinje cells and the cell concentration in the granular layer. No significant changes were observed in the groups of rats exposed to HF-EMWs for two or four weeks. Averaged body masses were not affected by HF-EMWs exposure. In conclusion, a 1439 MHz TDMA field did not induce observable changes in the permeability of the BBB, morphological changes in the cerebellums, or body mass changes in rats, as evaluated by the conventional methods.  相似文献   

3.
Cerebral fungal infections represent an important public health concern, where a key element of pathophysiology is the ability of the fungi to cross the blood-brain barrier (BBB). Yet the mechanism used by micro-organisms to cross such a barrier and invade the brain parenchyma remains unclear. This study investigated the effects of gliotoxin (GTX), a mycotoxin secreted by Aspergillus fumigatus, on the BBB using brain microvascular endothelial cells (BMECs) derived from induced pluripotent stem cells (iPSCs). We observed that both acute (2 h) and prolonged (24 h) exposure to GTX at the level of 1 μM or higher compromised BMECs monolayer integrity. Notably, acute exposure was sufficient to disrupt the barrier function in iPSC-derived BMECs, resulting in decreased transendothelial electrical resistance (TEER) and increased fluorescein permeability. Further, our data suggest that such disruption occurred without affecting tight junction complexes, via alteration of cell-matrix interactions, alterations in F-actin distribution, through a protein kinase C-independent signaling. In addition to its effect on the barrier function, we have observed a low permeability of GTX across the BBB. This fact can be partially explained by possible interactions of GTX with membrane proteins. Taken together, this study suggests that GTX may contribute in cerebral invasion processes of Aspergillus fumigatus by altering the blood-brain barrier integrity without disrupting tight junction complexes.  相似文献   

4.
R Sankar  F R Domer  A J Kastin 《Peptides》1981,2(3):345-347
The effects of intravenously-injected alpha-MSH and MIF-1 (Pro-Leu-Gly-NH2) on the permeability of the blood-brain barrier (BBB) to a large protein and a small anion were studied using radioiodinated serum albumin (RISA) and 99mTc-labeled sodium pertechnetate. The permeability of the BBB to RISA was unaltered by either peptide. Permeability to the inorganic pertechnetate anion, however, was significantly increased by alpha-MSH but not by MIF-1 at doses known to evoke EEG and behavioral responses. The peptides did not cause a change in the systemic blood pressure. It is possible, therefore, that at least some CNS effects of peripherally administered peptides are exerted by alteration of the permeability of the BBB to other substances.  相似文献   

5.
Banks WA  Burney BO  Robinson SM 《Peptides》2008,29(11):2061-2065
Human ghrelin is transported across the blood-brain barrier (BBB) of normal mice. Here, we studied the effects of triglycerides, obesity, and starvation in retired breeder mice maintained on a high fat diet, mice age-matched to the retired breeders but maintained on normal chow, and 8-week-old mice maintained on breeder chow. The rate of ghrelin transport across the BBB was studied by both the intravenous administration method of multiple-time regression analysis and by the brain perfusion method. We found that (1) obese, aged mice lost the ability to transport intravenously administered ghrelin across the BBB, resulting in an inverse relation between body weight and ghrelin BBB permeability; (2) serum triglycerides promoted transport of intravenously administered ghrelin across the BBB, whereas epinephrine had no effect; (3) fasting tended to promote ghrelin transport across the BBB as most readily shown in brain perfusion studies; (4) evidence suggested that a serum factor promoted ghrelin transport in 8-week-old mice. Overall, these results show that serum factors and physiological states influence the rate at which ghrelin is transported across the blood-brain barrier.  相似文献   

6.
We previously reported that electromagnetic fields (EMFs) [GSM 1800 standard (Global System for Mobile Communications, 1800 MHz)] increased sucrose permeation across the blood-brain barrier (BBB) in vitro. The cell culture model used in our previous study was comprised of rat astrocytes in coculture with porcine brain microvascular endothelial cells (PBECs). In this study, after optimization of cell culture conditions, distinctly improved barrier tightness was observed, accompanied by a loss of susceptibility to EMF-related effects on BBB permeability. Cell cultures were exposed for 1-5 days at an average specific absorption rate (SAR) of 0.3 W/kg in the identical exposure system as described before. To quantify barrier tightness, sucrose permeation across exposed PBEC was measured and compared to values of sham exposed cells and to a control group. Additionally, observations in the BBB coculture system were complemented by similar experiments using two other in vitro models, composed of PBEC monocultures with or without serum. These three models display distinctly higher barrier tightness than the previously used system. In all three BBB models, sucrose permeation across the cell layers remained unaffected by exposure to a GSM 1800 field for up to 5 days. We thus could not confirm enhanced permeability of the BBB in vitro after EMF exposure as reported before since the in vitro barrier tightness in these experiments is now more like that of the in vivo situation.  相似文献   

7.
Some proteolytic enzymes are able to increase reversibly the permeability of the blood-brain barrier (BBB) to different tracers such as trypan blue. Intraventricularly injected collagenase is the most potent of the enzymes tested. It was assumed that collagenase acts on basement membrane collagen, the partial hydrolysis of which increases BBB permeability, and that the recovery of normal permeability requires resynthesis of the degraded substrate. In this paper, it is shown that injection of collagenase in lateral brain ventricles of rats increases the level of hydroxyproline (hypro) in the CSF, suggesting that collagen is indeed degraded by the enzyme. We also demonstrate that treatment with inhibitors of protein synthesis—puromycin and cycloheximide—delays considerably the recovery of normal BBB permeability, which occurs 140 h after collagenase treatment instead of 70–72 h without inhibitors. This fact indicates that protein synthesis is necessary for the recovery of normal BBB permeability. The demonstration of release of hypro in the cerebrospinal fluid (CSF) after collagenase action, and of the necessity of protein synthesis for the recovery of normal permeability, supports the above-mentioned hypothesis, according to which basement membrane collagen plays a role in the regulation of the permeability of the BBB.  相似文献   

8.
The blood-brain barrier (BBB) is a specialized tissue interface that provides an important homeostatic and immunosurveillance role in the CNS. Unlike most microvascular tissues, which readily promote paracellular passage of solutes and macromolecules, the BBB is more analogous to polarized mucosal epithelia that restrict such permeability in order to prevent disease onset. Recent transgenic ablation studies have demonstrated that the BBB and mucosal tissues also share a requirement for astroglial-regulated barrier integrity. This review highlights the emerging concept that astroglia regulate barrier function at markedly different tissue interfaces. It also explores possible lessons that might be learnt by adopting epithelial model paradigms of the BBB. For example, novel glial-derived S-nitrosylation signals that regulate intestinal permeability in the digestive tract might provide new mechanistic insights into the function of the BBB. A better understanding of such universal mechanisms for barrier regulation will facilitate novel therapeutic strategies that target permeability disorders at CNS and mucosal tissue interfaces.  相似文献   

9.
Time-dependent changes in brain and spinal cord were studied in mice in a cardiac arrest model. A transient decrease in body weight and a prolonged decrease in brain weight occurred after arrest whereas spinal cord weight was unchanged. The permeability of the blood-brain barrier (BBB) to I131-albumin and I131 tumor necrosis factor-alpha (TNF) showed maximal, non-significant increases on day 5 after cardiac arrest, but the permeability of the blood-spinal cord barrier (BSCB) to both materials was unchanged with time. We conclude that selective weight loss occurs in the brain after cardiac arrest with the integrity of the BBB and BSCB remaining intact to serum proteins and minimal alteration in the blood to CNS transport of TNF.  相似文献   

10.
Hu X  Li JH  Lan L  Wu FF  Zhang EP  Song ZM  Huang HC  Luo FJ  Pan CW  Tan F 《PloS one》2012,7(2):e32161
It has been hypothesized that blood-brain barrier (BBB) dysfunction in Angiostrongylus cantonensis infection might be due to the apoptosis of the hosts' BBB cells. Here, we evaluated this hypothesis through several methods, all based on an in vitro mouse BBB model consisting of primary culture brain microvascular endothelial cells (BMECs) and brain astrocytic cells (BACs). In the present study, a four-hour percolation and HRP permeability experiment showed that A. cantonensis larvae extracts can increase the permeability of the BBB. Apoptosis among BMECs and BACs after exposure to larvae extracts was monitored by TUNEL and annexin-V-FITC/PI double staining. A. cantonensis larvae extracts were found to induce apoptosis in both BMECs and BACs. For this reason, we concluded that the induction of apoptosis might participate in the BBB dysfunction observed during angiostrongyliasis. Improved fundamental understanding of how A. cantonensis induces apoptosis may lead to new approaches to the treatment or prevention of this parasitic disease.  相似文献   

11.
The blood-brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB restricts the passive diffusion of many drugs from blood to brain. The ease with which any particular drug diffuses across the BBB is determined largely by the molecular features of drugs, and it is therefore possible to predict the BBB permeability of a drug from its molecular structure. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 in adequate experimental conditions, can be useful in mimicking the drug partitioning process into biological systems. Retention in BMC depends on the hydrophobicity, electronic and steric properties of drugs. In this paper, the usefulness of BMC for predicting the BBB penetration ability of drugs expressed as the brain/blood distribution coefficient (BB) is demonstrated. A multiple linear regression (MLR) model that relates the BB distribution coefficients data with BMC retention data and total molar charge is proposed. The model is obtained using 44 heterogeneous drugs including, neutral, anionic, and cationic compounds. A comparison with other reported methodologies to predict the BBB permeability is also presented.  相似文献   

12.
Time-dependent changes in peptide transport system (PTS-6), which transports the 38 amino acid pituitary adenylate cyclase activating polypeptide (PACAP) across the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), were studied in mice in a cardiac arrest model. The permeability of the BSCB to radioactivity labeled I131 showed a reversible increase on Day 2-(24 h) after cardiac arrest. The BBB showed no such increase. The increase in BSCB permeability was primarily located within the thoracic region of the spinal cord. We conclude that the ischemia occurring with cardiac arrest results in a transient increase in PTS-6 activity located primarily in the thoracic region of the spinal cord.  相似文献   

13.
Abstract: The permeability of the blood-nerve barrier (BNB) and the blood-brain barrier (BBB) to superoxide dismutase (SOD), insulin, albumin, and IgG in normal adult rats was quantified by measuring the permeability coefficient-surface area product (PS) with the intravenous bolus injection technique before and after covalent protein modification with the naturally occurring polyamines—putrescine (PUT), spermidine (SPD), and spermine (SPM). The PS value of the BNB for PUT-SOD was 21.1-fold greater than the native SOD, and the PS values of the BBB for PUT-SOD ranged from 17.6-fold greater for the thalamus to 23.6-fold greater for the caudate-putamen compared with native SOD. In a similar manner, polyamine-modified insulin showed a 1.7–2.0-fold increase in PS of the BNB and BBB compared with the high values of native insulin. Polyamine-modified albumin showed a remarkable 54–165-fold increase in PS of the BNB and BBB compared with native albumin, whereas PUT-IgG resulted in an even higher increase in the PS that ranged from 111- to 349-fold for nerve and different brain regions compared with native IgG. Polyamine modification of proteins, therefore, can dramatically increase the permeability at the BNB and BBB of a variety of proteins with widely differing Mr and function. It is surprising that the PS values of the BNB and BBB decreased with the increasing number of positive charges of the protonated amino groups on the polyamines (PUT > SPD > SPM). Although cationic proteins are known to interact with fixed anionic charges on the lumen of the microvascular endothelium, this observation of decreased permeability with increased positive charge distribution along the aliphatic carbon chain of the polyamines implies mechanisms other than simple electrostatic interaction involving charge density. It is suggested that the polyamine transporter may be responsible for the transport of these polyamine-modified proteins. Systemic administration of polyamine-modified peptides and proteins might prove to be an efficient approach to deliver therapeutic agents into the CNS and PNS for the treatment of a variety of neurological diseases.  相似文献   

14.
Far-field exposures of male albino rats to 2.45-GHz microwaves (10-microseconds pulses, 100 pps) at a low average power density (10 mW/cm2; SAR approximately 2 W/kg) and short durations (30-120 min) resulted in increased uptakes of tracer through the blood-brain barrier (BBB). The uptake of systemically administered rhodamine-ferritin complex by capillary endothelial cells (CECs) of the cerebral cortex was dependent on power density and on duration of exposure. At 5 mW/cm2, for example, a 15-min exposure had no effect. Near-complete blockade of uptake resulted when rats were treated before exposure to microwaves with a single dose of colchicine, which inhibits microtubular function. A pinocytotic-like mechanism is presumed responsible for the microwave-induced increase in BBB permeability.  相似文献   

15.
The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [14C]-alpha-aminoisobutyric acid. We observed that: a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging- and sex-related alterations in the permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels.  相似文献   

16.
The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the brain. In conclusion, the usefulness of separation methods during BBB permeability evaluation is immense and more application of these methods is foreseen in the future.  相似文献   

17.
Our previous publication has stressed the benefits of losartan, an angiotensin II receptor blocker, on the permeability of blood-brain barrier (BBB) and blood pressure during L-NAME-induced hypertension. This study reports the impacts of anti-hypertensive treatment by losartan on the brain endothelial barrier function and the arterial blood pressure, during acute hypertension episode, in experimentally diabetic hypertensive rats. Systolic blood pressure measurements were taken with tail cuff method before and during administration of L-NAME (0.5 mg/ml). We induced diabetes by using alloxan (50 mg/kg, i.p). Losartan (3 mg/kg, i.v) was given to rats following the L-NAME treatment. Acute hypertensive vascular injury was induced by epinephrine (40 microg/kg). The BBB disruption was quantified according to the extravasation of the Evans blue (EB) dye. L-NAME induced a significant increase in arterial blood pressure on day 14 in normoglycemic and hyperglycemic rats (p < 0.05). Losartan significantly reduced the increased blood pressure in hypertensive and diabetic hypertensive rats (p < 0.01). Epinephrine-induced acute hypertension in diabetic hypertensive rats increased the content of EB dye dramatically in cerebellum and diencephalon (p < 0.01) and slightly in both cerebral cortex (p < 0.05). Losartan treatment reduced the increased BBB permeability to EB dye in the brain regions of diabetic hypertensive rats treated with epinephrine (p < 0.05). This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to an increase in microvascular-EB-albumin efflux to brain, however losartan treatment significantly attenuates this protein's transport to brain tissue.  相似文献   

18.
Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) are increased in the maternal circulation during pregnancy. These factors may increase blood-brain barrier (BBB) permeability, yet brain edema does not normally occur during pregnancy. We therefore hypothesized that in pregnancy, the BBB adapts to high levels of these permeability factors. We investigated the influence of pregnancy-related circulating factors on VEGF-induced BBB permeability by perfusing cerebral veins with plasma from nonpregnant (NP) or late-pregnant (LP) rats (n=6/group) and measuring permeability in response to VEGF. The effect of VEGF, PLGF, and VEGF-receptor (VEGFR) activation on BBB permeability was also determined. Results showed that VEGF significantly increased permeability (×10(7) μm(3)/min) from 9.7 ± 3.5 to 21.0 ± 1.5 (P<0.05) in NP veins exposed to NP plasma, that was prevented when LP veins were exposed to LP plasma; (9.7±3.8; P>0.05). Both LP plasma and soluble FMS-like tyrosine-kinase 1 (sFlt1) in NP plasma abolished VEGF-induced BBB permeability in NP veins (9.5±2.9 and 12±2.6; P>0.05). PLGF significantly increased BBB permeability in NP plasma (18±1.4; P<0.05), and required only VEGFR1 activation, whereas VEGF-induced BBB permeability required both VEGFR1 and VEGFR2. Our findings suggest that VEGF and PLGF enhance BBB permeability through different VEGFR pathways and that circulating sFlt1 prevents VEGF- and PLGF-induced BBB permeability during pregnancy.  相似文献   

19.
We examined the effects of hyperosmolality on blood-brain barrier (BBB) permeability during development to test the vulnerability of the immature barrier to stress. The BBB response to hyperosmolality was quantified using the blood-to-brain transfer constant (Ki) with alpha-aminoisobutyric acid in fetuses at 60% and 90% gestation, premature, newborn, and older lambs. Ki plotted against osmolality increased as a function of increases in osmolality in all groups and brain regions. The relationship was described (P < 0.05) by a segmented regression model. At lower osmolalities, changes in Ki were minimal, but after a break point (threshold) was reached, the increase (P < 0.05) was linear. We examined the responses of Ki to hyperosmolality within each brain region by comparing the thresholds and slopes of the second regression segment. Lower thresholds and higher slopes imply greater vulnerability to hyperosmolality in the younger groups. Thresholds increased (P < 0.05) with development in the thalamus, superior colliculus, pons, and spinal cord, and slopes of the second regression segment decreased (P < 0.05) in the cerebellum, hippocampus, inferior colliculus, medulla, and spinal cord. BBB resistance to hyperosmolality increased (P < 0.05) with development in most brain regions. The pattern of the Ki plotted against osmolality was (P < 0.05) heterogenous among brain regions in fetuses and premature and newborn lambs, but not in older lambs. We conclude that 1) BBB permeability increased as a function of changes in osmolality, 2) the barrier becomes more resistant to hyperosmolality during development, and 3) the permeability response to hyperosmolality is heterogenous among brain regions in fetuses and premature and newborn lambs.  相似文献   

20.
1. The aim of the present study was to reveal the effect of transient forebrain ischemia on the regional and temporal changes in the permeability of the blood-brain barrier (BBB) permeability for sodium fluorescein (MW: 376 Da) and Evan's blue-labeled albumin (MW: 67 kDa) in stroke-prone spontaneously hypertensive rats (SHRSP).2. BBB permeability was significantly higher in the brain regions of 16-week-old control SHRSP than those in age-matched normotensive Wistar-Kyoto rats.3. Transient forebrain ischemia evoked by 10-min bilateral carotid occlusion increased the permeability of the BBB for albumin, but not for sodium fluorescein, after 6 and 24 h of reperfusion in brain regions of SHRSP.4. Extravasation of serum macromolecules may contribute to neuronal loss and development of hypertensive encephalopathy in SHRSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号