首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carboxypeptidase A6 (CPA6) is an extracellular matrix-bound metallocarboxypeptidase (CP) that has been implicated in Duane syndrome, a neurodevelopmental disorder in which the lateral rectus extraocular muscle is not properly innervated. Consistent with a role in Duane syndrome, CPA6 is expressed in a number of chondrocytic and nervous tissues during embryogenesis. To better characterize the enzymatic function and specificity of CPA6 and to compare this with other CPs, CPA6 was expressed in HEK293 cells and purified. Kinetic parameters were determined using a panel of synthetic carboxypeptidase substrates, indicating a preference of CPA6 for large hydrophobic C-terminal amino acids and only very weak activity toward small amino acids and histidine. A quantitative peptidomics approach using a mixture of peptides representative of the neuropeptidome allowed the characterization of CPA6 preferences at the P1 substrate position and suggested that small and acidic P1 residues significantly inhibit CPA6 cleavage. Finally, a comparison of available kinetic data for CPA enzymes shows a gradient of specificity across the subfamily, from the very restricted specificity of CPA2 to the very broad activity of CPA4. Structural data and modeling for all CPA/B subfamily members suggests the structural basis for the unique specificities observed for each member of the CPA/B subfamily of metallocarboxypeptidases.  相似文献   

2.
Characterization of carboxypeptidase A6, an extracellular matrix peptidase   总被引:1,自引:0,他引:1  
Carboxypeptidase A6 (CPA6) is a member of the M14 metallocarboxypeptidase family that is highly expressed in the adult mouse olfactory bulb and broadly expressed in embryonic brain and other tissues. A disruption in the human CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. In this study the cellular distribution, processing, and substrate specificity of human CPA6 were investigated. The 50-kDa pro-CPA6 is routed through the constitutive secretory pathway, processed by furin or a furin-like enzyme into the 37-kDa active form, and secreted into the extracellular matrix. CPA6 cleaves the C-terminal residue from a range of substrates, including small synthetic substrates, larger peptides, and proteins. CPA6 has a preference for large hydrophobic C-terminal amino acids as well as histidine. Peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides were found to be processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. Whereas CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, CPA6 converts inactive angiotensin I into the biologically active angiotensin II. Taken together, these data suggest a role for CPA6 in the regulation of neuropeptides in the extracellular environment within the olfactory bulb and other parts of the brain.  相似文献   

3.
Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy.  相似文献   

4.
5.
6.
7.
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.  相似文献   

8.
Synopsis InChaetodon trifasciatus, the large eye has the form of a thick disk rather than that of a globe. A deep cutaneous groove surrounds the eyeball, probably allowing rapid eye movements. The form and innervation of the three pairs of extraocular muscles are described. Each muscle is made of two types of fascicles of fibres, thick and thin. There is neither an anterior nor posterior myodome. The skull attachment of the obliques and of the inferior rectus is made on the thin sagittal ethmoidal membranous septum while that of the other recti occurs on osseous pieces of the skull. The attachment on the eyeball is made on the cartilaginous sclera. The ratio of the lengths of the antagonist muscles, superior vs. inferior oblique, superior vs. inferior rectus and medial vs. lateral rectus, is about 1.43:1. The three oculomotor nerves (III: common oculomotor, IV: trochlear and VI: abducens) as well as the ciliary system are described. For the following reasons, an analogy between the lateral rectus ofChaetodon trifasciatus and the lateral rectus + retractor bulbi of other vertebrates is indicated: (1) the nucleus of nerve III (which innervates four muscles) has four sectors, while that of IV (which innervates only the superior oblique) is made of one sector; (2) nerve VI consists of two roots corresponding to two groups of nerve cells of its motor nucleus and (3) in other vertebrates, nerve VI innervates both the lateral rectus and the retractor bulbi.  相似文献   

9.
10.
Carboxypeptidase A6 (CPA6) is a member of the A/B subfamily of M14 metallocarboxypeptidases that is expressed in brain and many other tissues during development. Recently, two mutations in human CPA6 were associated with febrile seizures and/or temporal lobe epilepsy. In this study we screened for additional CPA6 mutations in patients with febrile seizures and focal epilepsy, which encompasses the temporal lobe epilepsy subtype. Mutations found from this analysis as well as CPA6 mutations reported in databases of single nucleotide polymorphisms were further screened by analysis of the modeled proCPA6 protein structure and the functional role of the mutated amino acid. The point mutations predicted to affect activity and/or protein folding were tested by expression of the mutant in HEK293 cells and analysis of the resulting CPA6 protein. Common polymorphisms in CPA6 were also included in this analysis. Several mutations resulted in reduced enzyme activity or CPA6 protein levels in the extracellular matrix. The mutants with reduced extracellular CPA6 protein levels showed normal levels of 50-kDa proCPA6 in the cell, and this could be converted into 37-kDa CPA6 by trypsin, suggesting that protein folding was not greatly affected by the mutations. Interestingly, three of the mutations that reduced extracellular CPA6 protein levels were found in patients with epilepsy. Taken together, these results provide further evidence for the involvement of CPA6 mutations in human epilepsy and reveal additional rare mutations that inactivate CPA6 and could, therefore, also be associated with epileptic phenotypes.  相似文献   

11.
The first metallocarboxypeptidase (CP) was identified in pancreatic extracts more than 80 years ago and named carboxypeptidase A (CPA; now known as CPA1). Since that time, seven additional mammalian members of the CPA subfamily have been described, all of which are initially produced as proenzymes, are activated by endoproteases, and remove either C-terminal hydrophobic or basic amino acids from peptides. Here we describe the enzymatic and structural properties of carboxypeptidase O (CPO), a previously uncharacterized and unique member of the CPA subfamily. Whereas all other members of the CPA subfamily contain an N-terminal prodomain necessary for folding, bioinformatics and expression of both human and zebrafish CPO orthologs revealed that CPO does not require a prodomain. CPO was purified by affinity chromatography, and the purified enzyme was able to cleave proteins and synthetic peptides with greatest activity toward acidic C-terminal amino acids unlike other CPA-like enzymes. CPO displayed a neutral pH optimum and was inhibited by common metallocarboxypeptidase inhibitors as well as citrate. CPO was modified by attachment of a glycosylphosphatidylinositol membrane anchor to the C terminus of the protein. Immunocytochemistry of Madin-Darby canine kidney cells stably expressing CPO showed localization to vesicular membranes in subconfluent cells and to the plasma membrane in differentiated cells. CPO is highly expressed in intestinal epithelial cells in both zebrafish and human. These results suggest that CPO cleaves acidic amino acids from dietary proteins and peptides, thus complementing the actions of well known digestive carboxypeptidases CPA and CPB.  相似文献   

12.
Chen X  Lou Q  He J  Yin Z 《PloS one》2011,6(12):e29515

Background

The zebrafish ladybird homeobox homologous gene 2 (lbx2) has been suggested to play a key role in the regulation of hypaxial myogenic precursor cell migration. Unlike their lbx counterparts in mammals, the function of teleost lbx genes beyond myogenesis during embryonic development remains unexplored.

Principal Findings

Abrogation of lbx2 function using a specific independent morpholino oligonucleotide (MO) or truncated lbx2 mRNA with an engrailed domain deletion (lbx2eh-) resulted in defective formation of the zebrafish posterior lateral line (PLL). Migration of the PLL primordium was altered and accompanied by increased cell death in the primordium of lbx2-MO-injected embryos. A decreased number of muscle pioneer cells and impaired expression pattern of sdf1a in the horizontal myoseptum was observed in lbx2 morphants.

Significance

Injection of lbx2 MO or lbx2eh- mRNA resulted in defective PPL formation and altered sdf1a expression, confirming an important function for lbx2 in sdf1a-dependent migration. In addition, the disassociation of PPL nerve extension with PLL primordial migration in some lbx2 morphants suggests that pathfinding of the PLL primordium and the lateral line nerve may be regulated independently.  相似文献   

13.
14.
15.
The morphology and innervation of the six oculomotor muscles in the gobiid fishTridentiger trigonocephalus are described. Every rectus muscle is composed of two types of muscle fibres. Muscles attach onto the cartilaginous or fibrous sclerotica. Oblique muscles attach onto the ethmoidal plate; recti muscles attach onto the parasphenoid or a thick fibrous membrane. There is no myodome. The common oculomotor nerve is composed of four bundles, the trochlear and the externus of two. The two kinds of fibres of the lateral rectus and the two distinct bundles of the nerve VI suggest a possible homology between this muscle in fishes and the lateral rectus+retractor bulbi in mammals.  相似文献   

16.
17.
Very Large G-protein coupled Receptor-1 (VLGR1/Mass1/USH2C) is the largest known cell surface protein in vertebrates. Mutations in VLGR1 are associated with audiogenic epilepsy in mice and Usher syndrome (sensorineural deafness and retinitis pigmentosa) in humans. We characterized the zebrafish VLGR1 gene (vlgr1). It is 51% identical to human VLGR1 in amino acid sequence, but is 64% identical in the 7-transmembrane and cytoplasmic domains. It is 6199 amino acids in size and is encoded by a 19.2 kb mRNA. All introns correspond in location and phase to those of the human and mouse genes. In situ hybridization studies of zebrafish embryos demonstrate vlgr1 expression in the developing central nervous system, particularly in the hypothalamus, epiphysis and in the rhombic lips. Expression in the eye is associated with the optic nerve. Further studies using zebrafish may help ascertain the role of Vlgr1 in neural development.  相似文献   

18.
Anosmin-1, encoded by the KAL-1 gene, is the protein defective in the X-linked form of Kallmann syndrome. This human developmental disorder is characterized by defects in cell migration and axon target selection. Anosmin-1 is an extracellular matrix protein that plays a role, in vitro, in processes such as cell adhesion, neurite outgrowth, axon guidance, and axon branching. The zebrafish possesses two orthologues of the KAL-1 gene: kal1a and kal1b, which encode anosmin-1a and anosmin-1b, respectively. Previous in situ hybridization studies have shown that kal1a and kal1b mRNAs are expressed in undetermined cells of the inner ear but not in neuromast cells. Using specific antibodies against anosmin-1a and anosmin-1b, we report here that both proteins are expressed in sensory hair cells of the inner ear cristae ampullaris and the lateral line neuromasts. Accumulation of these proteins was observed mainly at the level of the hair bundle and also at the cell membrane. In neuromast hair cells, immunogold scanning electronmicroscopy demonstrated that anosmin-1a and anosmin-1b were present at the surface of the stereociliary bundle. In addition, anosmin-1a, but not anosmin-1b, was detected on the track of the ampullary nerve. This is the first report of anosmin-1 expression in sensory hair cells of the inner ear and lateral line, and along the ampullary nerve track.  相似文献   

19.
In the medial dorsolateral portion of the semilunar ganglion of curarized and anaesthetized lambs a cellular pool has been identified which contains the perikarya of the first-order neurons of the eye muscle proprioception. Responses to moderate manual stretch of individual eye muscles were recorded by means of tungsten microelectrodes, from single units of the ganglion. They were of the type induced by muscle spindle excitation. Such responses showed a somatotopic localization. The superior rectus and the superior oblique muscles were represented in the most dorsal layers of the ganglion, while the inferior rectus and the inferior oblique muscles projected on the most ventral portion of the pool. The medial and the lateral recti were represented in the medial and lateral parts and occasionally wedged themselves between the cells innervating the superior and the inferior muscles. Thus a somatotopic arrangement of the eye muscle proprioception has been demonstrated for the first time in the semilunar ganglion.  相似文献   

20.
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号