首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chua KN  Sim WJ  Racine V  Lee SY  Goh BC  Thiery JP 《PloS one》2012,7(3):e33183
Epithelial Mesenchymal Transition (EMT) is a crucial mechanism for carcinoma progression, as it provides routes for in situ carcinoma cells to dissociate and become motile, leading to localized invasion and metastatic spread. Targeting EMT therefore represents an important therapeutic strategy for cancer treatment. The discovery of oncogene addiction in sustaining tumor growth has led to the rapid development of targeted therapeutics. Whilst initially optimized as anti-proliferative agents, it is likely that some of these compounds may inhibit EMT initiation or sustenance, since EMT is also modulated by similar signaling pathways that these compounds were designed to target. We have developed a novel screening assay that can lead to the identification of compounds that can inhibit EMT initiated by growth factor signaling. This assay is designed as a high-content screening assay where both cell growth and cell migration can be analyzed simultaneously via time-course imaging in multi-well plates. Using this assay, we have validated several compounds as viable EMT inhibitors. In particular, we have identified compounds targeting ALK5, MEK, and SRC as potent inhibitors that can interfere with EGF, HGF, and IGF-1 induced EMT signaling. Overall, this EMT screening method provides a foundation for improving the therapeutic value of recently developed compounds in advanced stage carcinoma.  相似文献   

2.
Calpain activation is hypothesized to be an early occurrence in the sequence of events resulting in neurodegeneration, as well as in the signaling pathways linking extracellular accumulation of beta-amyloid (Abeta) peptides and intracellular formation of neurofibrillary tangles. In an effort to identify small molecules that prevent neurodegeneration in Alzheimer's disease by early intervention in the cell death cascade, a cell-based assay in differentiated Sh-SY5Y cells was developed using calpain activity as a read-out for the early stages of death in cells exposed to extracellular Abeta. This assay was optimized for high-throughput screening, and a library of approximately 120,000 compounds was tested. It was expected that the compounds identified as calpain inhibitors would include those that act directly on the enzyme and those that prevented calpain activation by blocking an upstream step in the pathway. In fact, of the compounds that inhibited calpain activation by Abeta with IC(50) values of <10 microM and showed little or no toxicity at concentrations up to 30 microM, none inhibit the calpain enzyme directly.  相似文献   

3.
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes within the plant and animal kingdoms. In humans, six functional lipoxygenase isoforms have been identified. 5-LOX, “platelet-type” 12-LOX (p12-LOX) and 15-LOX type 1 (15-LOX1), originally identified in leukocytes, platelets, and reticulocytes, respectively, generate lipid mediators involved in host cellular functions and in the pathophysiology of asthma, cardiovascular diseases, and cancer. The pharmaceutical industry has reinvigorated their programs to develop novel LOX inhibitors in view of recent findings. However, high throughput LOX screening assays to test novel agents against these intracellular enzymes are limited. We describe a cell-based 96-well microplate fluorescence assay tested against several existing LOX inhibitors, and validate the assay by comparing known IC50 values and HPLC analysis, which may provide a useful screen for novel LOX inhibitors.  相似文献   

4.
Prospects for stem cell-based therapy   总被引:1,自引:0,他引:1  
Daley GQ  Scadden DT 《Cell》2008,132(4):544-548
Resident pools of somatic stem cells in many organs are responsible for tissue maintenance and repair. The goal of regenerative medicine is to exploit these cells either by transplanting them from an exogenous source or by activating endogenous stem cells pharmacologically. For diseases caused by mutations in a single gene, the therapeutic goal is tissue replacement using stem cells engineered to correct the genetic defect. However, a number of technical hurdles must be overcome before therapies based on pluripotent human stem cells can enter the clinic.  相似文献   

5.
Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC(50)s for these eleven compounds ranged in potency from 0.4 to 6.1 μM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target.  相似文献   

6.
Affinity selection-mass spectrometry (AS-MS) techniques assess the binding of candidate molecules to immobilized or soluble receptors, and these methods are gaining acceptance in high throughput screening laboratories as valuable complements to traditional drug discovery technologies. A diversity of receptor types have been evaluated by AS-MS, including those that are difficult to screen using traditional biochemical approaches. AS-MS techniques that couple liquid chromatography-MS with size-based separation methods, such as ultrafiltration, gel permeation, or size-exclusion chromatography, are particularly amenable to the demands of MS-based screening and have demonstrated the greatest success across a broad range of drug targets. MS measurements of receptor function have many of the same advantages as AS-MS screening and are increasingly used for drug discovery as well.  相似文献   

7.
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.  相似文献   

8.
9.

Background  

Angiogenesis assays are important tools for the identification of regulatory molecules and the potential development of therapeutic strategies to modulate neovascularization. Although numerous in vitro angiogenesis models have been developed in the past, they exhibit limitations since they do not recapitulate the entire angiogenic process or correspond to multi-step procedures that are not easy to use. Convenient, reliable, easily quantifiable and physiologically relevant assays are still needed for pharmacological screenings of angiogenesis.  相似文献   

10.
With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.  相似文献   

11.
The use of high‐throughput screening (HTS) techniques has long been employed by the pharmaceutical industry to increase discovery rates for new drugs that could be useful for disease treatment, yet this technology has only been minimally applied in other applications such as in tissue regeneration. In this work, an assay for the osteogenic differentiation of human mesenchymal stem cells (hMSCs) was developed and used to screen a library of small molecules for their potential as either promoters or inhibitors of osteogenesis, based on levels of alkaline phosphatase activity and cellular viability. From a library of 1,040 molecules, 36 promoters, and 20 inhibitors were identified as hits based on statistical criteria. Osteopromoters from this library were further investigated using standard culture techniques and a wider range of outcomes to verify that these compounds drive cellular differentiation. Several hits led to some improvement in the expression of alkaline phosphatase, osteogenic gene expression, and matrix mineralization by hMSCs when compared to the standard dexamethasone supplemented media and one molecule was investigated in combination with a recently identified biodegradable and osteoconductive polymer. This work illustrates the ability of HTS to more rapidly identify potential molecules to control stem cell differentiation. Biotechnol. Bioeng. 2011; 108:163–174. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs.  相似文献   

13.
To counteract active glycolysis in tumors, we developed a new, convenient cell-based screening system to identify an inhibitor of glycolysis. Using this system, we searched for an inhibitor in the synthetic Carbasugar library and found two candidates. It was found that both inhibited glycolysis by suppressing the glucose uptake step in tumor cells.  相似文献   

14.
Currently, many gastrointestinal diseases are a major reason for the increased mortality rate of children and adults every year. Additionally, these patients may cope with the high cost of the parenteral nutrition (PN), which aids in the long-term survival of the patients. Other treatment options include surgical lengthening, which is not sufficient in many cases, and intestinal transplantation. However, intestinal transplantation is still accompanied by many challenges, including immune rejection and donor availability, which may limit the transplant’s success. The development of more safe and promising alternative treatments for intestinal diseases is still ongoing. Stem cell-based therapy (SCT) and tissue engineering (TE) appear to be the next promising choices for the regeneration of the damaged intestine. However, suitable stem cell source is required for the SCT and TE process. Thus, in this review we discuss how intestinal stem cells (ISCs) are a promising cell source for small intestine diseases. We will also discuss the different markers were used to identify ISCs. Moreover, we discuss the dominant Wnt signaling pathway in the ISC niche and its involvement in some intestinal diseases. Additionally, we discuss ISC culture and expansion, which are critical to providing enough cells for SCT and TE. Finally, we conclude and recommend that ISC isolation, culture and expansion should be considered when SCT is a treatment option for intestinal disorders. Therefore, we believe that ISCs should be considered a cell source for SCT for many gastrointestinal diseases and should be highlighted in future clinical applications.  相似文献   

15.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.  相似文献   

16.
In screening a library of natural and synthetic products for eukaryotic translation modulators, we identified two natural products, isohymenialdisine and hymenialdisine, that exhibit stimulatory effects on translation. The characterization of these compounds led to the insight that mRNA used to program the translation extracts during high-throughput assay setup was leading to phosphorylation of eIF2α, a potent negative regulatory event that is mediated by one of four kinases. We identified double-stranded RNA-dependent protein kinase (PKR) as the eIF2α kinase that was being activated by exogenously added mRNA template. Characterization of the mode of action of isohymenialdisine revealed that it directly acts on PKR by inhibiting autophosphorylation, perturbs the PKR–eIF2α phosphorylation axis, and can be modeled into the PKR ATP binding site. Our results identify a source of “false positives” for high-throughput screen campaigns using translation extracts, raising a cautionary note for this type of screen.  相似文献   

17.
Qi Y  Feng G  Yan W 《Molecular biology reports》2012,39(5):5683-5689
Osteoarthritis (OA) is a common disorder and the restoration of the diseased articular cartilage in patients with OA is still a challenge for researchers and clinicians. Currently, a variety of experimental strategies have investigated whether mesenchymal stem cells (MSCs) instead of chondrocytes can be used for the regeneration and maintenance of articular cartilage in OA. MSCs can modulate the immune response of individuals and positively influence the microenvironment of the stem cells already present in the diseased tissue. Through direct cell–cell interaction or the secretion of various factors, MSCs can initiate endogenous regenerative activities in the OA joint. Targeted gene-modified MSC-based therapy might further enhance the cartilage regeneration in OA. Conventionally, delivery of MSCs was attained by graft of engineered constructs derived from cell-seeded scaffolds. However, intra-articular MSCs transplantation without scaffolds is a more attractive option for OA treatment. This article briefly summarizes the current knowledge about MSC-based therapy for prevention or treatment of OA, discussing the direct intra-articular injection of MSCs for the treatment of OA in animal models and in clinical applications, as well as potential future strategies for OA treatment.  相似文献   

18.
Non-alcoholic Fatty Liver Disease (NAFLD) or pathological hepatic lipid overload, is considered to affect obese individuals. However, NAFLD in lean individuals is prevalent, especially in South Asian population. The pathophysiology of lean NAFLD is not well understood and most animal models of NAFLD use the high-fat diet paradigm. To bridge this gap, we have developed a diet-independent model of NAFLD in zebrafish. We have previously shown that chronic systemic inflammation causes metabolic changes in the liver leading to hepatic fat accumulation in an IL6 overexpressing (IL6-OE) zebrafish model. In the present study, we compared the hepatic lipid composition of adult IL6-OE zebrafish to the controls and found an accumulation of saturated triacylglycerols and a reduction in the unsaturated triacylglycerol species reminiscent of NAFLD patients. Zebrafish is an ideal system for chemical genetic screens. We tested whether the hepatic lipid accumulation in the IL6-OE is responsive to chemical treatment. We found that PPAR-gamma agonist Rosiglitazone, known to reduce lipid overload in the high-fat diet models of NAFLD, could ameliorate the fatty liver phenotype of the IL6-OE fish. Rosiglitazone treatment reduced the accumulation of saturated lipids and showed a concomitant increase in unsaturated TAG species in our inflammation-induced NAFLD model. Our observations suggest that the IL6-OE model can be effective for small molecule screening to identify compounds that can reverse hepatic lipid accumulation, especially relevant to lean NAFLD.  相似文献   

19.
High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a hit for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library.  相似文献   

20.
Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Small molecule inhibitors of Bcl-XL function have been discovered from diverse structure classes using rational drug design as well as high-throughput screening (HTS) approaches. However, most of the BH3 mimetics that have been identified via screening based on fluorescence polarization displayed an affinity for their presumed protein targets that is far lower than that of BH3-only proteins. Therefore, it is important to establish a simple and inexpensive secondary platform for hit validation which is pertinent to current efforts for developing compounds that mimic the action of BH3-only proteins as novel anticancer agents. These considerations prompted us to explore the differential scanning fluorimetry (DSF) method that is based on energetic coupling between ligand binding and protein unfolding. We have systematically tested known Bcl-XL/Bcl-2 inhibitors using DSF and have revealed distinct subsets of inhibitors. More importantly, we report that some of these inhibitors interacted selectively with glutathione S-transferase tagged Bcl-XL, whereas certain inhibitors exhibited marked selectivity towards native untagged Bcl-XL. Therefore, we propose that the affinity tag may cause a significant conformational switch in the Bcl-XL, which results in the selectivity for certain subsets of small molecule inhibitors. This finding also implies that the previous screens involving tagged proteins need to be carefully reexamined while further investigations must ensure that the right conformation of protein is used in future screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号