首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.  相似文献   

2.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

3.
4.
5.
In mast cells (MCs), the TEC family kinase (TFK) BTK constitutes a central regulator of antigen (Ag)-triggered, FcεRI-mediated PLCγ phosphorylation, Ca2+ mobilization, degranulation, and pro-inflammatory cytokine production. Less is known about the function of BTK in the context of stem cell factor (SCF)-induced KIT signaling. In bone marrow-derived MCs (BMMCs), Ag stimulation caused intense phosphorylation of BTK at Y551 in its active center and at Y223 in its SH3-domain, whereas in response to SCF only Y223 was significantly phosphorylated. Further data using the TFK inhibitor Ibrutinib indicated that BTK Y223 is phosphorylated by a non-BTK TFK upon SCF stimulation. In line, SCF-induced PLCγ1 phosphorylation was stronger attenuated by Ibrutinib than by BTK deficiency. Subsequent pharmacological analysis of PLCγ function revealed a total block of SCF-induced Ca2+ mobilization by PLC inhibition, whereas only the sustained phase of Ca2+ flux was curtailed in Ag-stimulated BMMCs. Despite this severe stimulus-dependent difference in inducing Ca2+ mobilization, PLCγ inhibition suppressed Ag- and SCF-induced degranulation and pro-inflammatory cytokine production to comparable extents, suggesting involvement of additional TFK(s) or PLCγ-dependent signaling components. In addition to PLCγ, the MAPKs p38 and JNK were activated by Ag in a BTK-dependent manner; this was not observed upon SCF stimulation. Hence, FcεRI and KIT employ different mechanisms for activating PLCγ, p38, and JNK, which might strengthen their cooperation regarding pro-inflammatory MC effector functions. Importantly, our data clearly demonstrate that analyzing BTK Y223 phosphorylation is not sufficient to prove BTK activation.  相似文献   

6.
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 ?, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in Western societies, affecting one in four adults in the USA, and is strongly associated with hepatic insulin resistance, a major risk factor in the pathogenesis of type 2 diabetes. Although the cellular mechanisms underlying this relationship are unknown, hepatic accumulation of diacylglycerol (DAG) in both animals and humans has been linked to hepatic insulin resistance. In this Perspective, we discuss the role of DAG activation of protein kinase Cε as the mechanism responsible for NAFLD-associated hepatic insulin resistance seen in obesity, type 2 diabetes, and lipodystrophy.  相似文献   

8.

Background

The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic β-cell death. This study examines the synergistic effects of glucose and FFA on β-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined.

Principal Findings

Increasing glucose (5–25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3β (Gsk3β) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3β.

Conclusions/Significance

Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3β activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet β-cell Gsk3β as a potential therapeutic target.  相似文献   

9.
Summary Incubation of Kluyveromyces bulgaricus in sodium and potassium salts led to in vivo activation of -galactosidase. The activation reaction was relatively slow since, at 37°C, it took 30 min to come to completion. The reaction was irreversible and was favoured by high salt concentrations with chlorides proving to be more efficient than phosphates. After incubation in KCl, the final activity obtained was 1.49 U/mg dry yeast and this represented a 10-fold increase in activity compared with the control value measured in ammonium phosphate. Hydrolysis of onitrophenyl--galactoside (ONPG) was insensitive to inhibitors of the transport systems and energy metabolism. There results suggest that K. bulgaricus resting cells take up substrates and ions that readily influence -galactosidase activity.  相似文献   

10.
TNF and IL-1 each can activate NF-B and induce gene expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix enzyme which can provide critical protection against hyperoxic lung injury. The regulation of MnSOD gene expression is not well understood. Since redox status can modulate NF-B and potential B site(s) exist in the MnSOD promoter, the effect of thiols (including NAC, DTT and 2-ME) on TNF and IL-1 induced activation of NF-B and MnSOD gene expression was investigated. Activation of NF-kB and increased MnSOD expression were potentiated by thiol reducing agents. In contrast, thiol oxidizing or alkylating agents inhibited both NF-B activation and elevated MnSOD expression in response to TNF or IL-1. Since protease inhibitors TPCK and TLCK can inhibit NF-B activation, we also investigated the effect of these compounds on MnSOD expression and NF-B activation. TPCK and TLCK each inhibited MnSOD gene expression and NF-B activation. Since the MnSOD promoter also contains anAP-1 binding site, the effect of thiols and thiol modifying agents on AP-1 activation was investigated. Thiols had no consistent effect onAP-1 activation. Likewise, some of the thiol modifying compounds inhibited AP-1 activation by TNF or IL-1, whereas others did not. Since diverse agents had similar effects on activation of NF-B and MnSOD gene expression, we have demonstrated that activation of NF-B and MnSOD gene expression are closely associated and that reduced sulfhydryl groups are required for cytokine mediation of both processes.Abbreviations O2 Superoxide radical - H2O2 Hydrogen peroxide - NAC N-acetyl L-cysteine - DTT Dithiothreitol - 2-ME 2-Mercaptoethanol - MnSOD Manganese superoxide dismutase - NF-B Nuclear factor kappa B - AP-1 Activator protein-1 - NBT Nitroblue tetrazolium - CAT Chloramphenicol acetyltransferase - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - TLCK Na-p-tosyl-L-lysine chloromethyl ketone - TAME N--p-tosyl-L-arginine methyl ester - NEM N-ethyl maleimide - DEM Diethyl maleate - CDNB 1-chloro-2,4-dinitrobenzene - DTTOX Oxidized dithiothreitol  相似文献   

11.
12.
Stimulation of Lys-plasminogen (Lys-Pg) and Glu-plasminogen (Glu-Pg) activation under the action of staphylokinase and Glu-Pg activation under the action of preformed plasmin-staphylokinase activator complex (Pm-STA) by low concentrations and inhibition by high concentrations of omega-amino acids (>90-140 mM) were found. Maximal stimulation of the activation was observed at concentrations of L-lysine, 6-aminohexanoic acid (6-AHA), and trans-(4-aminomethyl)cyclohexanecarboxylic acid 8.0, 2.0, and 0.8 mM, respectively. In contrast, the Lys-Pg activation rate by Pm-STA complex sharply decreased when concentrations of omega-amino acids exceeded the above-mentioned values. It was found that formation of Pm-STA complex from a mixture of equimolar concentrations of staphylokinase and Glu-Pg or Lys-Pg is stimulated by low concentrations (maximal at 10 mM) of 6-AHA. Negligible increase in the specific activities of plasmin and Pm-STA complex was detected at higher concentrations of 6-AHA (to maximal at 70 and 50 mM, respectively). Inhibitory effects of omega-amino acids on the rate of fibrinolysis induced by staphylokinase, Pm-STA complex, and plasmin were compared. It was found that inhibition of staphylokinase-induced fibrinolysis by omega-amino acids includes blocking of the reactions of Pm-STA complex formation, plasminogen activation by this complex, and lysis of fibrin by forming plasmin as a result of displacement of plasminogen and plasmin from the fibrin surface. Thus, the slow stage of Pm-STA complex formation plays an important role in the mechanism of action of omega-amino acids on Glu-Pg activation and fibrinolysis induced by staphylokinase. In addition to alpha-->beta change of Glu-Pg conformation, stimulation of Pm-STA complex formation leads to increase in Glu-Pg activation rate in the presence of low concentrations of omega-amino acids. Inhibition of Pm-STA complex formation on fibrin surface by omega-amino acids is responsible for appearance of long lag phases on curves of fibrinolysis induced by staphylokinase.  相似文献   

13.
To explore the structural mechanisms underlying the assembly and activation of family A GPCR dimers, we used the rat M(3) muscarinic acetylcholine receptor (M3R) as a model system. Studies with Cys-substituted mutant M3Rs expressed in COS-7 cells led to the identification of several mutant M3Rs that exclusively existed as cross-linked dimers under oxidizing conditions. The cross-linked residues were located at the bottom of transmembrane domain 5 (TM5) and within the N-terminal portion of the third intracellular loop (i3 loop). Studies with urea-stripped membranes demonstrated that M3R disulfide cross-linking did not require the presence of heterotrimeric G proteins. Molecular modeling studies indicated that the cross-linking data were in excellent agreement with the existence of a low-energy M3R dimer characterized by a TM5-TM5 interface. [(35)S]GTPγS binding/Gα(q/11) immunoprecipitation assays revealed that an M3R dimer that was cross-linked within the N-terminal portion of the i3 loop (264C) was functionally severely impaired (~50% reduction in receptor-G-protein coupling, as compared to control M3R). These data support the novel concept that agonist-induced activation of M3R dimers requires a conformational change of the N-terminal segment of the i3 loop. Given the high degree of structural homology among family A GPCRs, these findings should be of broad significance.  相似文献   

14.
γδ T (γδT) cells belong to a distinct T cell lineage that performs immune functions different from αβ T (αβT) cells. Previous studies established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence suggests that increased Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide-releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this article, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells, but it exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus, but it leads to increased γδT cells, particularly CD4(-)CD8(+) γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1(-/-) thymus proved to be cell intrinsic, whereas the increase in CD8(+) γδT cells is caused by non-cell-intrinsic mechanisms. Our data provide genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible with γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17.  相似文献   

15.
16.
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.  相似文献   

17.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) in vitro by amiloride has been investigated in both intact and fully disrupted microsomes. The major effect of amiloride is a 4.5-fold reduction in the Km of glucose-6-phosphatase activity in intact diabetic rat liver microsomes. Amiloride also decreased the Km of glucose-6-phosphatase activity in intact liver microsomes isolated from starved rats 2.5-fold. Kinetic calculations, direct enzyme assays and direct transport assays all demonstrated that the site of amiloride action was T1, the hepatic microsomal glucose 6-phosphate transport protein. This is, to our knowledge, the first report of an activation of any of the proteins of the multimeric hepatic microsomal glucose-6-phosphatase complex.  相似文献   

18.
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

19.
While elevated plasma prorenin levels are commonly found in diabetic patients and correlate with diabetic nephropathy, the pathological role of prorenin, if any, remains unclear. Prorenin binding to the (pro)renin receptor [(p)RR] unmasks prorenin catalytic activity. We asked whether elevated prorenin could be activated at the site of renal mesangial cells (MCs) through receptor binding without being proteolytically converted to renin. Recombinant inactive rat prorenin and a mutant prorenin that is noncleavable, i.e., cannot be activated proteolytically, are produced in 293 cells. After MCs were incubated with 10(-7) M native or mutant prorenin for 6 h, cultured supernatant acquired the ability to generate angiotensin I (ANG I) from angiotensinogen, indicating both prorenins were activated. Small interfering RNA (siRNA) against the (p)RR blocked their activation. Furthermore, either native or mutant rat prorenin at 10(-7) M alone similarly and significantly induced transforming growth factor-β(1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin mRNA expression, and these effects were blocked by (p)RR siRNA, but not by the ANG II receptor antagonist, saralasin. When angiotensinogen was also added to cultured MCs with inactive native or mutant prorenin, PAI-1 and fibronectin were further increased significantly compared with prorenin or mutant prorenin alone. This effect was blocked partially by treatment with (p)RR siRNA or saralasin. We conclude that prorenin binds the (p)RR on renal MCs and is activated nonproteolytically. This activation leads to increased expression of PAI-1 and transforming growth factor-β(1) via ANG II-independent and ANG II-dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may play a role in the development of diabetic nephropathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号