首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Stat3 activation by MEK kinase 1   总被引:6,自引:0,他引:6  
  相似文献   

2.
3.
4.
5.
6.
7.
8.
Stat5 is activated by a broad spectrum of cytokines, as well as non-receptor tyrosine kinases, such as Src. In this study, the DNA binding properties of the two closely related Stat5 proteins, Stat5a and Stat5b, induced either by prolactin (Prl) or by Src were analyzed by electrophoretic mobility shift assays using several different Stat5 binding sites. Src-induced Stat5b-DNA binding complexes consistently displayed a slightly faster mobility than those induced by Prl, as well as differences in their ability to be supershifted by anti-Stat5 antibodies. IP-Westerns performed using specific antibodies directed at the N and C termini of Stat5b suggested that depending on the activating stimulus, Stat5b exhibited different conformations, which influenced antibody accessibility at its C terminus. These conformational differences may in part be due to differential effects of Prl and Src on Stat5b tyrosine phosphorylation, since Src induced several additional sites of tyrosine phosphorylation of Stat5b at residues other than Tyr-699, including Tyr-724 and Tyr-679. The latter Tyr-679 is conserved in all mammalian Stat5bs, but is not present in Stat5a. A Stat 5bY679F mutant induced by Src kinase exhibited an altered pattern of nuclear localization as compared with wild-type Stat5b. Furthermore, this mutation inhibited v-Src-induced cyclin D1-luciferase reporter activity in transient transfection assays performed in Stat5a/b-deficient MEFs, suggesting that Tyr-679 phosphorylation may play a role in v-Src induced proliferation. Thus, depending on the signal transduction pathway responsible for activation, different conformations of activated Stat5 may result in selective biological responses.  相似文献   

9.
10.
Positive and negative regulation of cytokines such as IFN-gamma are key to normal homeostatic function. Negative regulation of IFN-gamma in cells occurs via proteins called suppressors of cytokine signaling (SOCS)1 and -3. SOCS-1 inhibits IFN-gamma function by binding to the autophosphorylation site of the tyrosine kinase Janus kinase (JAK)2. We have developed a short 12-mer peptide, WLVFFVIFYFFR, that binds to the autophosphorylation site of JAK2, resulting in inhibition of its autophosphorylation as well as its phosphorylation of IFN-gamma receptor subunit IFNGR-1. The JAK2 tyrosine kinase inhibitor peptide (Tkip) did not bind to or inhibit tyrosine autophosphorylation of vascular endothelial growth factor receptor or phosphorylation of a substrate peptide by the protooncogene tyrosine kinase c-src. Tkip also inhibited epidermal growth factor receptor autophosphorylation, consistent with the fact that epidermal growth factor receptor is regulated by SOCS-1 and SOCS-3, similar to JAK2. Although Tkip binds to unphosphorylated JAK2 autophosphorylation site peptide, it binds significantly better to tyrosine-1007 phosphorylated JAK2 autophosphorylation site peptide. SOCS-1 only recognizes the JAK2 site in its phosphorylated state. Thus, Tkip recognizes the JAK2 autophosphorylation site similar to SOCS-1, but not precisely the same way. Consistent with inhibition of JAK2, Tkip inhibited the ability of IFN-gamma to induce an antiviral state as well as up-regulate MHC class I molecules on cells at a concentration of approximately 10 microM. This is similar to the K(d) of SOCS-3 for the erythropoietin receptor. These data represent a proof-of-concept demonstration of a peptide mimetic of SOCS-1 that regulates JAK2 tyrosine kinase function.  相似文献   

11.
12.
13.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

14.
15.
SOCS-3 is an insulin-induced negative regulator of insulin signaling   总被引:29,自引:0,他引:29  
The SOCS proteins are induced by several cytokines and are involved in negative feedback loops. Here we demonstrate that in 3T3-L1 adipocytes, insulin, a hormone whose receptor does not belong to the cytokine receptor family, induces SOCS-3 expression but not CIS or SOCS-2. Using transfection of COS-7 cells, we show that insulin induction of SOCS-3 is enhanced upon Stat5B expression. Moreover, Stat5B from insulin-stimulated cells binds directly to a Stat element present in the SOCS-3 promoter. Once induced, SOCS-3 inhibits insulin activation of Stat5B without modifying the insulin receptor tyrosine kinase activity. Two pieces of evidence suggest that this negative regulation likely results from competition between SOCS-3 and Stat5B binding to the same insulin receptor motif. First, using a yeast two-hybrid system, we show that SOCS-3 binds to the insulin receptor at phosphotyrosine 960, which is precisely where Stat5B binds. Second, using confocal microscopy, we show that insulin induces translocation of SOCS-3 from an intracellular compartment to the cell membrane, leading to colocalization of SOCS-3 with the insulin receptor. This colocalization is dependent upon phosphorylation of insulin receptor tyrosine 960. Indeed, in cells expressing an insulin receptor mutant in which tyrosine 960 has been mutated to phenylalanine, insulin does not modify the cellular localization of SOCS-3. We have thus revealed an insulin target gene of which the expression is potentiated upon Stat5B activation. By inhibiting insulin-stimulated Stat5B, SOCS-3 appears to function as a negative regulator of insulin signaling.  相似文献   

16.
17.
Suppressor of cytokine signaling (SOCS)-1 protein modulates signaling by IFN-gamma by binding to the autophosphorylation site of JAK2 and by targeting bound JAK2 to the proteosome for degradation. We have developed a small tyrosine kinase inhibitor peptide (Tkip) that is a SOCS-1 mimetic. Tkip is compared in this study with the kinase inhibitory region (KIR) of SOCS-1 for JAK2 recognition, inhibition of kinase activity, and regulation of IFN-gamma-induced biological activity. Tkip and a peptide corresponding to the KIR of SOCS-1, ((53))DTHFRTFRSHSDYRRI((68)) (SOCS1-KIR), both bound similarly to the autophosphorylation site of JAK2, JAK2(1001-1013). The peptides also bound to JAK2 peptide phosphorylated at Tyr(1007), pJAK2(1001-1013). Dose-response competitions suggest that Tkip and SOCS1-KIR similarly recognize the autophosphorylation site of JAK2, but probably not precisely the same way. Although Tkip inhibited JAK2 autophosphorylation as well as IFN-gamma-induced STAT1-alpha phosphorylation, SOCS1-KIR, like SOCS-1, did not inhibit JAK2 autophosphorylation but inhibited STAT1-alpha activation. Both Tkip and SOCS1-KIR inhibited IFN-gamma activation of Raw 264.7 murine macrophages and inhibited Ag-specific splenocyte proliferation. The fact that SOCS1-KIR binds to pJAK2(1001-1013) suggests that the JAK2 peptide could function as an antagonist of SOCS-1. Thus, pJAK2(1001-1013) enhanced suboptimal IFN-gamma activity, blocked SOCS-1-induced inhibition of STAT3 phosphorylation in IL-6-treated cells, enhanced IFN-gamma activation site promoter activity, and enhanced Ag-specific proliferation. Furthermore, SOCS-1 competed with SOCS1-KIR for pJAK2(1001-1013). Thus, the KIR region of SOCS-1 binds directly to the autophosphorylation site of JAK2 and a peptide corresponding to this site can function as an antagonist of SOCS-1.  相似文献   

18.
19.
20.
The development and resolution of an inflammatory process are regulated by a complex interplay among cytokines that have pro- and anti-inflammatory effects. Effective and sustained action of a proinflammatory cytokine depends on synergy with other inflammatory cytokines and antagonism of opposing cytokines that are often highly expressed at inflammatory sites. We analyzed the effects of the inflammatory and stress agents, IL-1, TNF-alpha, LPS, sorbitol, and H(2)O(2), on signaling by IL-6 and IL-10, pleiotropic cytokines that activate the Jak-Stat signaling pathway and have both pro- and anti-inflammatory actions. IL-1, TNF-alpha, and LPS blocked the activation of Stat DNA binding and tyrosine phosphorylation by IL-6 and IL-10, but not by IFN-gamma, in primary macrophages. Inhibition of Stat activation correlated with inhibition of expression of IL-6-inducible genes. The inhibition was rapid and independent of de novo gene induction and occurred when the expression of suppressor of cytokine synthesis-3 was blocked. Inhibition of IL-6 signaling was mediated by the p38 subfamily of stress-activated protein kinases. Jak1 was inhibited at the level of tyrosine phosphorylation, indicating that inhibition occurred at least in part upstream of Stats in the Jak-Stat pathway. Experiments using Stat3 mutated at serine 727 and using truncated IL-6Rs suggested that the target of inhibition is contained within the membrane-proximal region of the cytoplasmic domain of the gp130 subunit of the IL-6 receptor and is different from the SH2 domain-containing protein-tyrosine phosphatase/suppressor of cytokine synthesis-3 docking site. These results identify a new level at which IL-1 and TNF-alpha modulate signaling by pleiotropic cytokines such as IL-6 and IL-10 and provide a molecular basis for the previously described antagonism of certain IL-6 actions by IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号