首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mitomycin-C-sensitive (MCs) strains of Haemophilus influenzae, being poorly transformable with DNA carrying the antibiotic resistence markers novr and eryr, were further investigated to determine the cause of their poor transformability. After being genetically integrated into the mutant-recipient genome the donor marker is replicated at the same rate as in the wild type, indicating that recombination in the mutant strains is normal. In the mutants, designated Td (transformation-deficient), the poor transformability for the novr and eryr markers is due to the lack of phenotypic expression of the markers, because the strains are killed by concentrations of antibiotics normally used to select for novr and eryr transformants. Since the strains exhibit extreme sensitivity both to deoxycholate and osmotic shock in the presence of EDTA, the increased sensitivity to antibiotics (including mitomycin-C) is probably caused by a change in the cell envelope. Although recombination in the mutant strains proceeds normally, the Td mutation nevertheless decreases both the rate of inactivation and of integration of donor DNA.  相似文献   

2.
A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination.  相似文献   

3.
Summary Transformations of two linked ribosomal loci (str and ery) were carried out between the SIII-1 strain of pneumococcus and the Challis and SBE strains of group H streptococcus. Transfer of markers between the Challis and SBE strains is as efficient as in the corresponding intrastrain transformations. Transfer between either of these strains and the pneumococcus, however, is less efficient than in the corresponding intrastrain transformation, and is referred to as heterospecific transformation. The inefficiency of the heterospecific transformation is due neither to specific lethality nor reduced uptake of heterologous DNA.When DNA was extracted from the hybrid resulting from a heterospecific cross and used to transform the original donor and recipient species, we found: (a) no donor material in the hybrid DNA responsible for the markedly low efficiency of integration into the recipient species; (b) donor material, in addition to the transforming marker itself, detectable by the higher efficiency with which hybrid DNA transforms the original donor species than does DNA from the original recipient species.DNA was extracted from each of 36 independently derived, doubly marked transformants resulting from the cross: Challis str-s ery-sxSIII-1 str-r53 ery-r2 DNA. Variability was observed between the different hybrid DNAs when the integration efficiency of the str marker in each DNA was compared with that of the ery marker. Variability of as great a magnitude was not observed when the same hybrid DNA was tested in repeated experiments, or when different DNA preparations were extracted from the same hybrid strain, or when several DNA preparations were obtained from a number of independent homospecific transformants. It is concluded that different kinds of donor material are present in the various hybrids, and that the nature of this extra-marker material affects the integration of the marker.Linkage of the str and ery markers was reduced in heterospecific transformations. The kind of donor DNA in the hybrid genome did not affect the linkage reduction observed when the str and ery markers were transferred back to the donor species in which they originated. Indeed, this linkage reduction was the same as that observed when the markers were originally transferred from the SIII-1 to the Challis strain. Specific factors reducing linkage in heterologous crosses must, therefore, be distinct from other factors which affect integration efficiency. The former, however, may be primarily responsible for the inefficiency of heterospecific transformation.One of the hybrid DNAs was used to obtain a second generation of hybrids by passing it through each of the original parental strains. Tests of the DNAs extracted from 24 independently produced, second-generation hybrids showed that hybrid DNA is subject to further alteration by a second integration involving some heterologous confrontation. The probability of such alteration appears to be increased if the second integration is accompanied by linkage reduction.Supported by NIH grant AI-00917.  相似文献   

4.
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies—so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kanr) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kanr mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.  相似文献   

5.
6.
Using a randomly-cloned, HindIII-digested, chromosomal fragment from Lactococcus lactis subsp. lactis LM0230, first-generation lactococcal integrative cloning vectors were developed. Through dideoxy DNA sequence analysis, the cloned chromosomal DNA fragment was determined to be 1026 base pairs. Southern hybridization studies demonstrated applicability of the integrative vector to other strains of L. lactis and L. lactis subsp. cremoris. Identification of a single NruI site near the middle of the chromosomal fragment allowed insertion of the erythromycin (Em)-resistance (ery r) gene obtained from L. lactis IL1837. Integration of the ery r gene into the L. lactis LM0230 chromosome was achieved by a Campbell-like recombination. The nisin (Nis)-resistance (nis r) gene from L. lactis IL1904 was inserted into the NruI site in a separate clone and integration into the L. lactis LM0230 chromosome was achieved via a replacement recombination event following electroporation of the linearized nis r fragment flanked by the cloned chromosomal DNA. Transformants grown in the absence of either Em or Nis for >200 generations and subsequently transferred to various concentrations of the selectable agent confirmed the stability of the integrated genes. Further studies involving the Nis-resistant (Nis r ) transformant suggested that the integrated nis r gene may be amplifying within the host chromosome. Correspondence to: S. K. Harlander  相似文献   

7.
Summary All of several hundred erythromycin resistant (eryR) single site mutants ofBacillus subtilis W168 are temperature sensitive for sporulation (spots). The mutants and wild type cells grow vegetatively at essentially the same rates at both permissive (30° C) and nonpermissive (47° C) temperatures. In addition, cellular protein synthesis, cell mass increases and cell viabilities are similar in mutant and wild type strains for several hours after the end of vegetative growth (47° C). In the mutants examined, the temperature sensitive periods begin when the sporulation process is approximately 40% completed, and end when the process is 90% complete. At nonpermissive temperatures, the mutants produce serine and metal proteases at 50% of the wild type rate, accumulate serine esterase at 16% of the wild type rate, and do not demonstrate a sporulation related increase in alkaline phosphatase activity.The eryR and spots phenotypes cotransform 100%, and cotransduce 100% using phage PBS1. Revertants selected for ability to sporulate normally at 47° C (spo+), simultaneously regain parental sensitivity to erythromycin. No second site revertants are found.Ribosomes from eryR spots strains bind erythromycin at less than 1% of the wild type rate. A single 50S protein (L17) from mutant ribosomes shows an altered electrophoretic mobility. Ribosomes from spo+ revertants bind erythromycin like parental ribosomes and their proteins are electrophoretically identical to wild type. These data indicate that the L17 protein of the 50S ribosomal subunit fromBacillus subtilis may participate specifically in the sporulation process.  相似文献   

8.
Using DNA clones, the physical distance between the linked genesnov andstr inHaemophilus influenzae was estimated. Although none of the cloned inserts contained both the markers, pJ1-8StrR 13 (insert of 18·7 kb) includedstr gene at one end and part ofnov gene at the other end of the insert. By EcoRI restriction analysis and by Southern hybridization, the distance between the two EcoRI sites, cutting at which inactivates the two genes, was estimated to be 17·7 kb. A single continuous EcoRI fragment (containing 4EcoRI sites within it) carrying both the genes intact would need to be 20·4 kb in size. These estimates were confirmed independently using different clones ofnov r andstr r alleles as probes for hybridization with BamHI-digested chromosomal DNA.  相似文献   

9.
The high frequency of between-strain genetic recombinants of Chlamydia trachomatis among isolates obtained from human sexually transmitted infections suggests that lateral gene transfer (LGT) is an important means by which C. trachomatis generates variants that have enhanced relative fitness. A mechanism for LGT in C. trachomatis has not been described, and investigation of this phenomenon by experimentation has been hampered by the obligate intracellular development of this pathogen. We describe here experiments that readily detected LGT between strains of C. trachomatis in vitro. Host cells were simultaneously infected with an ofloxacin-resistant (Ofxr) mutant of a serovar L1 strain (L1:Ofxr-1) and a rifampin-resistant (Rifr) mutant of a serovar D strain (D:Rifr-1). Development occurred in the absence of antibiotics, and the progeny were subjected to selection for Ofxr Rifr recombinants. The parental strains differed at many polymorphic nucleotide sites, and DNA sequencing was used to map genetic crossovers and to determine the parental sources of DNA segments in 14 recombinants. Depending on the assumed DNA donor, the estimated minimal length of the transferred DNA was ≥123 kb in one recombinant but was ≥336 to ≥790 kb in all other recombinants. Such trans-DNA lengths have been associated only with conjugation in known microbial LGT systems, but natural DNA transformation remains a conceivable mechanism. LGT studies can now be performed with diverse combinations of C. trachomatis strains, and they could have evolutionary interest and yield useful recombinants for functional analysis of allelic differences between strains.  相似文献   

10.
Summary An erythromycin resistant (ery r) mutant of Escherichia coli Q13, QE107, was characterized by (1) the cross resistance of the cells to several macrolide antibiotics such as erythromycin, tylosin, spiramycin, oleandomycin and leucomycin, (2) the reduced affinity of its ribosomes to erythromycin and probably to the other macrolides mentioned above, (3) a low peptidyl transferase activity of its ribosomes and (4) an altered 50-8 protein of the 50s ribosomal subunits. These characters were always transferred together with the ery marker in the transduction experiments.Preliminary data of part of this work has been published (Tanaka, Teraoka, Tamaki, Watanabe, Osawa, Otaka and Takata, 1971).  相似文献   

11.
Summary Spontaneous chloramphenicol (cap r)- and erythromycin (ery r)-resistant mutants were isolated from strain ade7–50 h - and the antimycin-resistant mutant ana r-8 ade 7–50 h- of Schizosaccharomyces pombe (Sch. p.). By mitotic segregation analysis all 154 cap r- and 120 ery r-mutants derived from ade 7–50 h - proved to be recessive chromosomal, whereas all 108 cap r- and 200 ery r-mutants originating from ana r-8 were extrachromosomally inherited. The rate of spontaneous cap r- and ery r-mutants was about hundredfold in ana r-8 compared to ade 7–50 h -. Growth of cap r-and ery r-mutants was not inhibited by chloramphenicol or erythromycin, respectively, in glucose-medium and only slightly in glycerol-medium at concentrations which completely inhibited ana r-8. By mitotic segregation-, tetrad-, and mitotic haploidization-analysis the extrachromosomal inheritance of mutants derived from ana r-8 was established. Segregational patterns of cap r- and ery r-determinats during mitosis, meiosis, and mitotic haplidization of diploids are discussed.  相似文献   

12.
Summary After mutagenesis of the erythromycin-resistant Chlamydomonas reinhardi strain ery-M1b, four mutants were isolated, each more sensitive to erythromycin than ery-M1b. All four mutants carry the original ery-M1b mutation which confers resistance and a separate mutation (es) which partially suppresses resistance. The mutants are designated es5ery-M1b, es101ery-M1b, es105ery-M1b, and es115ery-M1b. The suppressor mutations represent at least three different Mendelian loci. The suppressor es101 is located on the same linkage group as ery-M1, while the other suppressors are not linked to ery-M1.Although some of these suppressors can also mask the erythromycin resistance of ery-M2 strains, none had any effect on the non-Mendelian mutant ery-Ula. In addition, each suppressor affected the cross-resistance of ery-M1 mutants to other antibiotics. At least two of the changes in cross-resistance are due solely to the suppressor.Chloroplast ribosomes from cells carrying es5ery-M1b, es101ery-M1b, and es115ery-M1b have a greater affinity for 14C-erythromycin in vitro than those from ery-M1b. The degree of affinity depends upon the concentration of KCl.Each of these Mendelian suppressors probably affects a chloroplast ribosome function. Hence, a number of nuclear genes must play roles in the biogenesis of the chloroplast ribosome in Chlamydomonas reinhardi.  相似文献   

13.
Erythromycin resistant mutants of Bacillus subtilis   总被引:6,自引:0,他引:6  
Summary Erythromycin resistant (ery r) mutants were isolated from Bacillus subtilis ATCC 6633. The composition of ribosomal proteins were analyzed for thirteen such ery r-mutants with chromatography on a carboxymethyl cellulose (CMC) column. The 50s subunit from all of the ery r-mutants was found to contain the altered 50d protein. The ribosomes prepared from the ery r-mutants did not show in vitro alteration of the ability to combine with erythromycin.  相似文献   

14.
We have studied the growth properties of 17 isogenic strains of Escherichia coli K-12 differing only in the recA, recB, recC, and sbcA alleles. We have observed the following. (i) All recombination deficient strains have decreased growth rates and decreased viabilities compared with recombination proficient strains. The large populations of nonviable cells in Rec cultures may arise by spontaneous lethal sectoring (9). (ii) A recA mutant strain which is entirely recombination deficient and which shows high ultraviolet sensitivity and “reckless” deoxyribonucleic acid (DNA) breakdown has approximately the same growth rate and twice the viability as recB and recC mutant strains which have residual recombination proficiency, moderate ultraviolet sensitivity, and “cautious” DNA breakdown. (iii) Indirectly suppressed (sbcA) recombination proficient (Rec+) revertants of recB and recC mutant strains have approximately normal growth rates and are three times as viable as their Rec ancestors (but not as viable as rec+ cells). We suggest the following hypothesis to account for the low viability of RecE. coli. Single-strand breaks in the DNA duplex, necessary for normal bacterial growth, may be repaired in a Rec+ cell. Failure of Rec cells to repair this normal DNA damage may lead to the observed loss of viability.  相似文献   

15.
Conjugational recombination in Escherichia coli depends normally on RecBCD enzyme, a multifunctional nuclease and DNA helicase produced by the recB, recC, and recD genes. However, recombination can proceed efficiently without RecBCD in recB or recC strains carrying additional mutations in both the sbcB and sbcC genes. Recombination in these strains, sometimes referred to as the RecF pathway, requires gene products that are not essential in the RecBCD-dependent process predominating in the wild type. It has also been reported to produce a different spectrum of recombinant genotypes in crosses with Hfr donors. However, the sbcC+ gene was unknowingly transferred to the recipient strain in some of these crosses, and this may have affected the outcome. This possibility was examined by conducting parallel crosses with Hfr donors that were either wild type or mutant for sbcC. Transfer of sbcC+ from an Hfr donor is shown to alter the frequency of recombinant genotypes recovered. There is a severe reduction in progeny that inherit donor markers linked to the sbcC+ allele and an increase in the incidence of multiple exchanges. Colonies of mixed genotype for one or more of the unselected proximal markers are also much more prevalent. Since the yield of recombinants is lower than normal, these changes are attributed to the reduced viability of recombinants that inherit sbcC+ from the Hfr donor. When the Hfr donor used is also mutant for sbcC, the yield of recombinants is greater and the frequencies of the different genotypes recovered are similar to those obtained in crosses with a rec+ sbc+ recipient, in which transfer of sbcC+ has no apparent effect. Earlier studies are re-examined in light of these findings. It is concluded that, while recombination in recBC sbcBC strains involves different enzymes, the underlying molecular mechanism is essentially the same as that in the wild type.  相似文献   

16.
Summary Chromatographic analyses on a Dowex 50x8 column of tryptic digests of the mutationally altered 50-8 protein component from several erythromycin resistant (ery r) mutants of Escherichia coli and Escherichia freundii have been performed. It was found that (1) the difference in the elution profile of the altered components detected with carboxymethyl cellulose column chromatography reflects the difference in their amino acid sequence, (2) the structural change(s) of the 50-8 protein from three E. coli ery r mutants examined seems to exist only in the same single peptide fragment and (3) the primary structure of the 50-8(R) protein of E. freundii (ery s: wild type) differs from that of E. coli Q13 (ery s) and the structural change in 50-8(R) component of E. freundii caused by the ery r mutation was found to take place in different peptide fragments from that in which the mutational change of the E. coli 50-8 component occurred.  相似文献   

17.
Antibiotic-resistant (either to erythromycin or chloramphenicol) temperature-sensitive mutants were isolated with about the same frequency in 2 strains of the petite negative yeast K. lactis.The eryR and capR mutants isolated in the strain K. lactis CBS 2359 showed with high frequency both a lethal-conditioned (lc) or a petite temperature-sensitive (pts) phenotype, whereas amongst the many eryR and capR mutants isolated in the strain K. lactis CBS 2360 only lc phenotypes appeared. In the mutants isolated from K. lactis CBS 2360, one growth cycle in the presence of ethidium bromide irreversibly blocked the transmission of antibiotic resistance and temperature sensitivity (lc and pts), whereas at least 2 growth cycles were required to give the same results for the mutants isolated in K. lactis CBS 2359.The spontaneous reversion frequencies for the temperature sensitivity were about the same for the lc mutants isolated in the 2 strains, but the frequencies of co-reversion of the antibiotic resistance were higher in eryRlc and capRlc mutants isolated from K. lactis CBS 2360.The analysis of the effect of the exposure to erythromycin or to the temperature of 36°C on protein synthesis carried out by isolated mitochondria of 2 eryRlc mutants of K. lactis CBS 2360 and CBS 2359 showed that, in these mutants, mitochondrial protein synthesis became resistant to the drug and sensitive to temperature. The exposure at 36°C, before protein synthesis was inactived, determined in these mutants a condition of sensitivity to the antibiotic, suggesting that even though the 2 K. lactis strains differ in some aspects concerning the behaviour of their mitochondrial information they might depend, as to their petite-negative character, on the role that mitochondrial protein synthesis has in cell division.  相似文献   

18.
Summary DNA repair and recombination were investigated in a recD mutant of Escherichia coli which lacked the nuclease activity of the RecBCD enzyme. The resistance of this mutant to ultraviolet (UV) light was shown to be a function of recJ. A recD recJ double mutant was found to be more sensitive to UV radiation than a recB mutant, whereas recD and recJ single mutants were resistant. Recombination in conjugational crosses with Hfr donors was also reduced in recD recJ strains, but the effect was modest in comparison with the sensitivity to UV. Within certain limits, mutations in recF, recN, recO, lexA and ruv did not affect sensitivity to UV and recombination in a recD mutant any more than in a recD + strain. The possibility that recD and recJ provide overlapping activities, either of which can promote DNA repair and recombination in the absence of the other, is discussed.  相似文献   

19.
A transformation-deficient strain of Haemophilus influenzae, lacking adenosine 5'-triphosphate-dependent deoxyribonuclease activity, was isolated by selection for sensitivity to mitomycin. The mutant, designated JK57, possibily showed a moderate sensitivity to ultraviolet (UV) irradiation and treatment with methyl methane sulfonate. Contrary to the wild type, the mutant degraded chromosomal deoxyribonucleic acid (DNA) to some extent. However, after UV irradiation to the mutant degraded considerably less DNA than the wild type and the TD24 mutant of H. influenzae, the latter being equivalent to a recA mutant of Escherichia coli. A TD2457 double mutant, constructed by transferring the TD24 mutation into the JK57 strain, was as sensitive to deleterious agents and as deficient in transformation as the TD24 single mutant; in the double mutant, however, after UV irradiation chromosomal DNA was degraded to the same extent as in the JK57 mutant. The number of transformants per unit of radioactive donor DNA taken up by JK57 recipient cells was approximately 10-fold smaller than in the wild type. Presynaptically, the fate of donor DNA in the adenosine 5'-triphosphate-dependent deoxyribonuclease-deficient mutants was not different from that in the wild type. In contrast to TD24 and the TD2457 double mutant, in the JK57 mutant, recombinant-type activities (molecules carrying both the donor and recipient markers) were formed almost as well as in the wild type. After integration into the JK57 recipient genome, the rate of replication of the donor marker was equal to that of the recipient marker during a number of generations, which suggests that the donor DNA is normally integrated into the JK57 chromosome. It is suggested that transformed JK57 cells pass with a high frequency into a type of cells that can replicate their chromosomes many times but have lost the ability to form visible colonies after plating.  相似文献   

20.
From their recombination properties, tandem rho- mutants of the mitochondrial genome of Saccharomyces cerevisiae were divided into two categories. In crosses between PIF-independent rho- and rho+ strains, the recombination frequency is low and similar in PIF/pif and pif/pif diploids. In crosses between PIF-dependent rho- and rho+ strains, the recombination frequency is stimulated 10-50 times in PIF/pif diploids and is drastically decreased in pif/pif diploids. These results suggest that a recombinogenic signal is present in the mitochondrial (mt) DNA of PIF-dependent rho- clones. This signal is not recognized in pif mutants. Sequence analysis of a series of small (<300 bp) overlapping tandem rho- genomes located in the ery region of the 21S rRNA gene led us to identify an essential element of this signal within a 41-bp A+T sequence exhibiting over 26 bp a perfect dyad symmetry. However the recombinogenic signal is not sequence-specific since the sequence described above does not characterize PIF-dependent rho- clones located in the oli1 region. Our results rather suggest that the recombinogenic signal is related to the topology of rho- DNA. Denaturated sites in the double helix or cruciform structures elicited by local negative supercoiling might be preferred sites of the initiation of recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号